Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-10T14:43:24.213Z Has data issue: false hasContentIssue false

On some percolation results of J. M. Hammersley

Published online by Cambridge University Press:  14 July 2016

J. G. Oxley
Affiliation:
University of Oxford
D. J. A. Welsh*
Affiliation:
University of Oxford
*
∗∗ Postal address: Merton College, Oxford 0X1 4JD, U.K.

Abstract

We examine how much classical percolation theory on lattices can be extended to arbitrary graphs or even clutters of subsets of a finite set. In the process we get new short proofs of some theorems of J. M. Hammersley. The FKG inequality is used to get an upper bound for the percolation probability and we also derive a lower bound. In each case we characterise when these bounds are attained.

Type
Research Papers
Copyright
Copyright © Applied Probability Trust 1979 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Present address: Department of Mathematics, The Australian National University, P.O. Box 4, Canberra A.C.T. 2600, Australia.

References

[1] Bondy, J. A. and Murty, U. S. R. (1976) Graph Theory with Applications. Macmillan, London.Google Scholar
[2] Broadbent, S. R. and Hammersley, J. M. (1959) Percolation processes I. Crystals and mazes. Proc. Camb. Phil. Soc. 53, 629641.Google Scholar
[3] Eckhoff, J. and Wegner, G. (1975) Über einen Satz von Kruskal. Period. Math. Hung. 6, 137142.Google Scholar
[4] Edmonds, J. and Fulkerson, D. R. (1970) Bottleneck extrema. J. Combinatorial Theory 8, 299306.Google Scholar
[5] Esary, J. D. and Proschan, F. (1963) Coherent structures of non-identical components. Technometrics 5, 191209.Google Scholar
[6] Essam, J. W. (1972) Percolation and cluster size. In Phase Transition and Critical Phenomena, ed. Domb, C. and Green, M. S., 2, 197270.Google Scholar
[7] Fortuin, C. M., Kasteleyn, P. W. and Ginibre, J. (1971) Correlation inequalities on some partially ordered sets. Commun. Math. Phys. 22, 89103.Google Scholar
[8] Frisch, H. L. and Hammersley, J. M. (1963) Percolation processes and related topics. J. SIAM 11, 894918.Google Scholar
[9] Hammersley, J. M. (1957) Percolation processes; lower bounds for the critical probability. Ann. Math. Statist. 28, 790795.Google Scholar
[10] Hammersley, J. M. (1957) Bornes supérieures de la probabilité critique dans un processus de filtration. Proc. 87th Internat. Colloq. CNRS, Paris, 1737.Google Scholar
[11] Hammersley, J. M. (1961) Comparison of atom and bond percolation processes. J. Math. Phys. 2, 728733.Google Scholar
[12] Hammersley, J. M. (1974) Postulates for subadditive processes. Ann. Prob. 2, 652680.Google Scholar
[13] Hammersley, J. M. and Walters, R. S. (1963) Percolation and fractional branching processes. J. SIAM 11, 831839.Google Scholar
[14] Kurkijarvi, J. and Padmore, T. C. (1975) Percolation in two-dimensional lattices. J. Phys. A 8, 683696.Google Scholar
[15] Nash-Williams, C. St. J. A. (1967) Infinite graphs — a survey. J. Combinatorial Theory 3, 286301.Google Scholar
[16] Oxley, J. G. and Welsh, D. J. A. (1978) The Tutte polynomial and percolation. In Graph Theory and Related Topics, ed. Bondy, J. A. and Murty, U. S. R. Academic Press, London.Google Scholar
[17] Seymour, P. D. (1975) Matroids, Hypergraphs and the Max.-flow Min.-cut Theorem. D. Phil. Thesis, University of Oxford.Google Scholar
[18] Seymour, P. D. and Welsh, D. J. A. (1975) Combinatorial applications of an inequality from statistical mechanics. Math. Proc. Camb. Phil. Soc. 77, 485495.Google Scholar
[19] Seymour, P. D. and Welsh, D. J. A. (1978) Percolation probabilities on the square lattice. Ann. Discrete Math. 3, 227247.Google Scholar
[20] Shante, V. K. S. and Kirkpatrick, S. (1971) An introduction to percolation theory. Adv. Phys. 20, 325356.Google Scholar
[21] Sykes, M. F. and Glen, M. (1976) Percolation processes in two dimensions I. Low density series expansions. J. Phys. A 9, 8795.Google Scholar
[22] Welsh, D. J. A. (1977) Percolation and related topics. Sci. Progress 64, 6785.Google Scholar
[23] Wilf, H. S. (1976) Which polynomials are chromatic? Colloq. Internat. Theorie Combinatorie, Roma, 247256.Google Scholar