Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-28T02:11:23.707Z Has data issue: false hasContentIssue false

On the asymptotic behaviour of the distributions of the busy period and service time in M/G/1

Published online by Cambridge University Press:  14 July 2016

A. De Meyer*
Affiliation:
Katholieke Universiteit te Leuven
J. L. Teugels*
Affiliation:
Katholieke Universiteit te Leuven
*
Postal address: Katholieke Universiteit te Leuven, Faculteit der Wetenschappen, Departement Wiskunde, Celestijnenlaan 200B, B-3030 Heverlee, Belgium.
Postal address: Katholieke Universiteit te Leuven, Faculteit der Wetenschappen, Departement Wiskunde, Celestijnenlaan 200B, B-3030 Heverlee, Belgium.

Abstract

For the distribution function of the busy period in the M/G/l queueing system with traffic intensity less than one it is shown that the tail varies regularly at infinity iff the tail of the service time varies regularly at infinity.

Type
Research Papers
Copyright
Copyright © Applied Probability Trust 1980 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Bingham, N. H. and Doney, R. A. (1974) Asymptotic properties of supercritical branching processes I; The Galton-Watson process. Adv. Appl. Prob. 6, 711731.Google Scholar
[2] Bingham, N. H. and Teugels, J. L. (1980) Mercerian and Tauberian theorems for differences. Math. Z. 170, 247262.CrossRefGoogle Scholar
[3] Cohen, J. W. (1969) The Single Server Queue. North-Holland, Amsterdam.Google Scholar
[4] Cohen, J. W. (1972) On the tail of the stationary waiting time distributions and limit theorems for the M/G/1 queue. Ann. Inst. H. Poincaré 8, 255263.Google Scholar
[5] Cohen, J. W. (1973) Some results on regular variation for distribution in queueing and fluctuation theory. J. Appl. Prob. 10, 343353.Google Scholar
[6] De Haan, L. (1970) On Regular Variation and its Applications to the Weak Convergence of Sample Extremes. Mathematical Centre Tracts 32, Amsterdam.Google Scholar
[7] De Haan, L. (1976) An Abel–Tauber theorem for Laplace transforms. J. London Math. Soc. (2) 13, 537542.CrossRefGoogle Scholar
[8] De Meyer, A. M. (1979) Doctoral Dissertation, Katholieke Universiteit te Leuven.Google Scholar
[9] Embrechts, P. (1978) A second-order theorem for Laplace transforms. J. London Math. Soc. (2) 17, 102106.CrossRefGoogle Scholar
[10] Feller, W. (1971) An Introduction to Probability Theory and its Applications , Vol. 2, 2nd edn. Wiley, New York.Google Scholar
[11] Neuts, M. F. (1974) The Markov renewal branching process. In Proc. Conf. Mathematical Methods in the Theory of Queues, Kalamazoo 1974.Google Scholar
[12] Pakes, A. G. (1975) On the tails of waiting-time distributions. J. Appl. Prob. 12, 555564.CrossRefGoogle Scholar
[13] Takács, L. (1962) Introduction to the Theory of Queues. Oxford University Press, New York.Google Scholar
[14] Veraverbeke, N. (1977) The Wiener-Hopf factors of a random walk. Stoch. Proc. Appl. 5, 2738.Google Scholar