Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-26T16:53:31.637Z Has data issue: false hasContentIssue false

On the critical threshold for continuum AB percolation

Published online by Cambridge University Press:  16 January 2019

David Dereudre*
Affiliation:
Université de Lille
Mathew Penrose*
Affiliation:
University of Bath
*
* Postal address: Laboratoire Paul Painlevé, Université de Lille, 59655 Villeneuve d’Ascq, France. Email address: david.dereudre@univ-lille.fr
** Postal address: Department of Mathematical Sciences, University of Bath, BathBA2 7AY, UK.

Abstract

Consider a bipartite random geometric graph on the union of two independent homogeneous Poisson point processes in d-space, with distance parameter r and intensities λ,μ. For any λ>0 we consider the percolation threshold μc(λ) associated to the parameter μ. Denoting by λc the percolation threshold for the standard Poisson Boolean model with radii r, we show the lower bound μc(λ)≥clog(c∕(λ−λc)) for any λ>λc with c>0 a fixed constant. In particular, there is no phase transition in μ at the critical value of λ, that is, μcc) =∞.

Type
Research Papers
Copyright
Copyright © Applied Probability Trust 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Esary, J. D. and Proschan, F. (1963). Coherent structures of non-identical components. Technometrics 5, 191209.Google Scholar
[2]Franceschetti, M., Pensure, M. D. and Rosoman, T. (2010). Strict inequalities of critical probabilities on Gilbert’s continuum percolation graph. Preprint. Available at https://arxiv.org/abs/1004.1596.Google Scholar
[3]Franceschetti, M., Pensure, M. D. and Rosoman, T. (2011). Strict inequalities of critical values in continuum percolation. J. Statist. Phys. 142, 460486.Google Scholar
[4]Grimmett, G. (1999). Percolation, 2nd edn. Springer, Berlin.Google Scholar
[5]Iyer, S. K. and Yogeshwaran, D. (2012). Percolation and connectivity in AB random geometric graphs. Adv. Appl. Prob. 44, 2141.Google Scholar
[6]Last, G. and Penrose, M. (2018). Lectures on the Poisson Process. Cambridge University Press.Google Scholar
[7]Lorenz, C. D. and Ziff, R. M. (2001). Precise determination of the critical percolation threshold for the three dimensional “Swiss cheese” model using a growth algorithm. J. Chem. Phys. 114, 36593661.Google Scholar
[8]Meester, R. and Roy, R. (1996). Continuum Percolation. Cambridge University Press.Google Scholar
[9]Penrose, M. D. (2014). Continuum AB percolation and AB random geometric graphs. J. Appl. Prob. 51A, 333344.Google Scholar
[10]Pinti, P. C. and Win, Z. (2012). Percolation and connectivity in the intrinsically secure communications graph. IEEE Trans. Inform. Theory 58, 17161730.Google Scholar
[11]Quintanilla, J. A. and Ziff, R. M. (2007). Asymmetry of percolation thresholds of fully penetrable disks with two different radii. Phys. Rev. E 76, 051115.Google Scholar
[12]Sarkar, A. and Haenggi, M. (2013). Percolation in the Secrecy Graph. Discrete Appl. Math. 161, 21202132.Google Scholar