No CrossRef data available.
Published online by Cambridge University Press: 30 January 2018
This note contains two main results. (i) (Discrete time) Suppose that S is a martingale whose marginal laws agree with a geometric simple random walk. (In financial terms, let S be a risk-neutral asset price and suppose that the initial option prices agree with the Cox-Ross-Rubinstein binomial tree model.) Then S is a geometric simple random walk. (ii) (Continuous time) Suppose that S=S0eσ X-σ2〈 X〉/2 is a continuous martingale whose marginal laws agree with a geometric Brownian motion. (In financial terms, let S be a risk-neutral asset price and suppose that the initial option prices agree with the Black-Scholes model with volatility σ>0.) Then there exists a Brownian motion W such that Xt=Wt+o(t1/4+ ε) as t↑∞ for any ε> 0.