No CrossRef data available.
Published online by Cambridge University Press: 14 July 2016
For two-person zero-sum games, where the probability of each player winning is a continuous function of time and is known to both players, the mutually optimal strategy for proposing and accepting a doubling of the game value is known. We present an algorithm for deriving the optimal doubling strategy of a player who is aware of the suboptimal strategy followed by the opponent. We also present numerical results about the magnitude of the benefits; the results support the claim that repeated application of the algorithm by both players leads to the mutually optimal strategy.