Article contents
Phase Changes in the Topological Indices of Scale-Free Trees
Published online by Cambridge University Press: 30 January 2018
Abstract
A scale-free tree with the parameter β is very close to a star if β is just a bit larger than −1, whereas it is close to a random recursive tree if β is very large. Through the Zagreb index, we consider the whole scene of the evolution of the scale-free trees model as β goes from −1 to + ∞. The critical values of β are shown to be the first several nonnegative integer numbers. We get the first two moments and the asymptotic behaviors of this index of a scale-free tree for all β. The generalized plane-oriented recursive trees model is also mentioned in passing, as well as the Gordon-Scantlebury and the Platt indices, which are closely related to the Zagreb index.
MSC classification
- Type
- Research Article
- Information
- Copyright
- © Applied Probability Trust
References
- 3
- Cited by