Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-27T10:30:26.927Z Has data issue: false hasContentIssue false

A probabilistic model for interfaces in a martensitic phase transition

Published online by Cambridge University Press:  09 August 2022

Pierluigi Cesana*
Affiliation:
Kyushu University
Ben M. Hambly*
Affiliation:
University of Oxford
*
*Postal address: Institute of Mathematics for Industry, 744 Motooka, Fukuoka 819-0395, Japan. Email address: cesana@math.kyushu-u.ac.jp
**Postal address: Mathematical Institute, Radcliffe Observatory Quarter, Woodstock Road, Oxford OX2 6GG, UK. Email address: hambly@maths.ox.ac.uk

Abstract

We analyse features of the patterns formed from a simple model for a martensitic phase transition that fragments the unit square into rectangles. This is a fragmentation model that can be encoded by a general branching random walk. An important quantity is the distribution of the lengths of the interfaces in the pattern, and we establish limit theorems for some of the asymptotics of the interface profile. In particular, we are able to use a general branching process to show almost sure power law decay of the number of interfaces of at least a certain size and a general branching random walk to examine the numbers of rectangles of a certain aspect ratio. In doing so we extend a theorem on the growth of the general branching random walk as well as developing results on the tail behaviour of the limiting random variable in our general branching process.

Type
Original Article
Copyright
© The Author(s), 2022. Published by Cambridge University Press on behalf of Applied Probability Trust

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ball, J. M. (2002). Some open problems in elasticity. In Geometry, Mechanics, and Dynamics, pp. 359. Springer, New York.CrossRefGoogle Scholar
Ball, J. M. and James, R. D. (1987). Fine phase mixtures as minimizers of energy. Arch. Ration. Mech. Anal. 100, 1352.CrossRefGoogle Scholar
Ball, J. M., Cesana, P. and Hambly, B. M. (2015). A probabilistic model for martensitic avalanches. In MATEC Web of Conferences, Vol. 33, Art. 02008.CrossRefGoogle Scholar
Bertoin, J. (2006). Random Fragmentation and Coagulation Processes (Cambridge Studies in Advanced Mathematics 102). Cambridge University Press, Cambridge.CrossRefGoogle Scholar
Bhattacharya, K. (2003). Microstructure of Martensite. Oxford University Press.Google Scholar
Biggins, J. D. (1978). The asymptotic shape of the branching random walk. Adv. Appl. Prob. 10, 6284.CrossRefGoogle Scholar
Biggins, J. D. (1992). Uniform convergence of martingales in the branching random walk. Ann. Prob. 20, 137151.CrossRefGoogle Scholar
Biggins, J. D. (1995). The growth and spread of the general branching random walk. Ann. Appl. Prob. 5, 10081024.CrossRefGoogle Scholar
Biggins, J. D. (1997). How fast does a general branching random walk spread? In Classical and Modern Branching Processes (Minneapolis, MN, 1994) (IMA Volumes in Mathematics and its Applications 84), pp. 1939. Springer, New York.CrossRefGoogle Scholar
Biggins, J. D. and Bingham, N. H. (1993). Large deviations in the supercritical branching process. Adv. Appl. Prob. 25, 757772.CrossRefGoogle Scholar
Broutin, N., Neininger, R. and Sulzbach, H. (2012). Partial match queries in random quadtrees. In Proceedings of the Twenty-Third Annual ACM–SIAM Symposium on Discrete Algorithms, pp. 10561065. ACM, New York.CrossRefGoogle Scholar
Callegaro, A. and Roberts, M. I. (2021). A spatially-dependent fragmentation process. Available at arXiv:2103.09761.Google Scholar
Charmoy, P. H. A., Croydon, D. A. and Hambly, B. M. (2017). Central limit theorems for the spectra of a class of random self-similar fractals. Trans. Amer. Math. Soc. 369, 89679013.CrossRefGoogle Scholar
Derrida, B. and Flyvbjerg, H. (1987). Statistical properties of randomly broken objects and of multivalley structures in disordered systems. J. Phys. A 20, 52735288.CrossRefGoogle Scholar
Frontera, C., Goicoechea, J., Ràfols, I. and Vives, E. (1995). Sequential partitioning: an alternative to understanding size distributions of avalanches in first-order phase transitions. Phys. Rev. E 52, 5671.CrossRefGoogle ScholarPubMed
Gatzouras, D. (2000). On the lattice case of an almost sure renewal theorem for branching random walks. Adv. Appl. Prob. 32, 720737.CrossRefGoogle Scholar
Georgii, H.-O., Schreiber, T. and Thäle, C. (2015). Branching random tessellations with interaction: a thermodynamic view. Ann. Prob. 43, 18921943.CrossRefGoogle Scholar
Hambly, B. M. and Jones, O. D. (2003). Thick and thin points for random recursive fractals. Adv. Appl. Prob. 35, 251277.CrossRefGoogle Scholar
Harris, S. C., Knobloch, R. and Kyprianou, A. E. (2010). Strong law of large numbers for fragmentation processes. Ann. Inst. H. Poincaré Prob. Statist. 46, 119134.CrossRefGoogle Scholar
James, R. D. (2019). Materials from mathematics. Bull. Amer. Math. Soc. 56, 128.CrossRefGoogle Scholar
Liu, Q. (2000). On generalized multiplicative cascades. Stoch. Process. Appl. 86, 263–28.CrossRefGoogle Scholar
Liu, Q. (2001). Asymptotic properties and absolute continuity of laws stable by random weighted mean. Stoch. Process. Appl. 95, 83107.CrossRefGoogle Scholar
Mackisack, M. S. and Miles, R. E. (1996). Homogeneous rectangular tessellations. Adv. Appl. Prob. 28, 9931013.CrossRefGoogle Scholar
Müller, S. (1999). Variational methods for microstructure and phase transitions. In Calculus of Variations and Geometric Evolution Problems (Lecture Notes Math. 1713), pp 85210. Springer, Berlin and Heidelberg.CrossRefGoogle Scholar
Nagel, W. and Weiss, V. (2005). Crack STIT tessellations: characterization of stationary random tessellations stable with respect to iteration. Adv. Appl. Prob. 37, 859883.CrossRefGoogle Scholar
Nerman, O. (1981). On the convergence of supercritical general (C-M-J) branching processes. Z. Wahrscheinlichkeitsth. 57, 365395.CrossRefGoogle Scholar
Pasko, A. Yu., Likhachev, A. A., Koval, Yu. N. and Kolomytsev, V. I. (1997). 2D Fourier analysis and its application to study of scaling properties and fractal dimensions of $\varepsilon$ -martensite distribution in $\gamma$ -matrix of Fe-Mn-Si alloy. J. Physique IV 7, C5-435–C5-440.Google Scholar
Planes, A., Mañosa, L. and Vives, E. (2013). Acoustic emission in martensitic transformations. J. Alloys Compounds 577, S699S704.CrossRefGoogle Scholar
Salje, E. K. H., Koppensteiner, J., Reinecker, M., Schranz, W. and Planes, A. (2009). Jerky elasticity: avalanches and the martensitic transition in $\textrm{Cu}_{74.08}\textrm{Al}_{23.13}\textrm{Be}_{2.79}$ shape-memory alloy. Appl. Phys. Lett. 95, 231908.CrossRefGoogle Scholar
Song, Y., Chen, X., Dabade, V., Shield, T. W. and James, R. D. (2013). Enhanced reversibility and unusual microstructure in a phase-transforming material. Nature 502, 8588.CrossRefGoogle Scholar
Torrens, J., Illa, X., Vives, E. and Planes, A. (2017). Geometrical model for martensitic phase transitions: understanding criticality and weak universality during microstructure growth. Phys. Rev. E 95, 013001.CrossRefGoogle Scholar
Uchiyama, K. (1982). Spatial growth of a branching process of particles living in $\mathbb{R}^d$ . Ann. Prob. 10, 896918.CrossRefGoogle Scholar