Published online by Cambridge University Press: 14 July 2016
The benefit obtained by a selfish robot by cheating in a real multirobotic system can be represented by the random variable Xn,q: the number of cheating interactions needed before all the members in a cooperative team of robots, playing a TIT FOR TAT strategy, recognize the selfish robot. Stability of cooperation depends on the ratio between the benefit obtained by selfish and cooperative robots. In this paper, we establish the probability model for Xn,q. If the values of the parameters n and q are known, then this model allows us to make predictions about the stability of cooperation. Moreover, if these parameters are modifiable, it is possible to tune them to guarantee the viability of cooperation.