Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-27T10:57:06.540Z Has data issue: false hasContentIssue false

Random polytopes in a ball

Published online by Cambridge University Press:  14 July 2016

C. Buchta*
Affiliation:
Technische Universität Wien
J. Müller*
Affiliation:
Technische Universität Wien
*
Postal address: Institut für Analysis, Technische Mathematik und Versicherungsmathematik, Technische Universität Wien, Gusshausstrasse 27-29, A-1040 Wien, Austria.
Postal address: Institut für Analysis, Technische Mathematik und Versicherungsmathematik, Technische Universität Wien, Gusshausstrasse 27-29, A-1040 Wien, Austria.

Abstract

The convex hull of n random points chosen independently and uniformly from a d-dimensional ball is a convex polytope. Its expected surface area, its expected mean width and its expected number of facets are explicitly determined.

Type
Research Papers
Copyright
Copyright © Applied Probability Trust 1984 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Alikoski, H. A. (1939) Über das Sylvestersche Vierpunktproblem. Ann. Acad. Sci. Fennicae 51, 110.Google Scholar
[2] Baddeley, A. (1977) A fourth note on recent research in geometrical probability. Adv. Appl. Prob. 9, 824860.Google Scholar
[3] Blaschke, W. (1917) Lösung des “Vierpunktproblems” von Sylvester aus der Theorie der geometrischen Wahrscheinlichkeiten. Leipziger Berichte 69, 436453.Google Scholar
[4] Blaschke, W. (1923) Vorlesungen über Differentialgeometrie II. Affine Differentialgeometrie. Springer, Berlin.Google Scholar
[5] Buchta, C. (1984) Stochastische Approximation konvexer Polygone. Z. Wahrscheinlichkeitsth. To appear.CrossRefGoogle Scholar
[6] Buchta, C. (1984) Zufallspolygone in konvexen Vielecken. J. reine angew. Math. 347, 212220.Google Scholar
[7] Buchta, C. (1984) Das Volumen von Zufallspolyedern im Ellipsoid. Anz. Öst. Akad. Wiss. Math.-Natur. Kl. To appear.Google Scholar
[8] Buchta, C. (1983) Über die konvexe Hülle von Zufallspunkten in Eibereichen. Elementa Math. 38, 153156.Google Scholar
[9] Crofton, M. W. (1885) Probability. Encyclopaedia Britannica 19, 768788.Google Scholar
[10] Deltheil, R. (1926) Probabilités géométriques. Traité du calcul des probabilités et de ses applications. Gauthier-Villars, Paris.Google Scholar
[11] Efron, B. (1965) The convex hull of a random set of points. Biometrika 52, 331343.Google Scholar
[12] Gröbner, W. and Hofreiter, N. (1949/50) Integraltafel. Springer, Wien und Innsbruck.Google Scholar
[13] Groemer, H. (1973) On some mean values associated with a randomly selected simplex in a convex set. Pacific J. Math. 45, 525533.Google Scholar
[14] Groemer, H. (1974) On the mean value of the volume of a random polytope in a convex set. Arch. Math. 25, 8690.Google Scholar
[15] Gruber, P. ?. (1983) Approximation of convex bodies. In Convexity and its Applications, ed. Gruber, P. M. and Wills, J. M., Birkhäuser, Basel, 131162.Google Scholar
[16] Hammersley, J. M. (1950) The distribution of distance in a hypersphere. Ann. Math. Statist. 21, 447452.Google Scholar
[17] Kendall, M. G. and Moran, P. A. P. (1963) Geometrical Probability. Griffin, London.Google Scholar
[18] Kingman, J. F. C. (1969) Random secants of a convex body. J. Appl. Prob. 6, 660672.CrossRefGoogle Scholar
[19] Little, D. V. (1974) A third note on recent research in geometrical probability. Adv. Appl. Prob. 6, 103130.Google Scholar
[20] Lord, R. D. (1954) The distribution of distance in a hypersphere. Ann. Math. Statist. 25, 794798.Google Scholar
[21] Miles, R. E. (1971) Isotropic random simplices. Adv. Appl. Prob. 3, 353382.Google Scholar
[22] Moran, P. A. P. (1966) A note on recent research in geometrical probability. J. Appl. Prob. 3, 453463.Google Scholar
[23] Moran, P. A. P. (1969) A second note on recent research in geometrical probability. Adv. Appl. Prob. 1, 7389.Google Scholar
[24] Raynaud, H. (1970) Sur l'enveloppe convexe des nuages de points aléatoires dans ℝ n . J. Appl. Prob. 7, 3548.Google Scholar
[25] Renyi, A. and Sulanke, R. (1963) Über die konvexe Hülle von n zufällig gewählten Punkten. Z. Wahrscheinlichkeitsth. 2, 7584.Google Scholar
[26] Renyi, A. and Sulanke, R. (1964) Über die konvexe Hülle von n zufällig gewählten Punkten II. Z. Wahrscheinlichkeitsth. 3, 138147.Google Scholar
[27] Santaló, L. A. (1976) Integral Geometry and Geometric Probability. Addison-Wesley, Reading, Ma.Google Scholar
[28] Schneider, R. and Wieacker, J. A. (1980) Random polytopes in a convex body. Z. Wahrscheinlichkeitsth. 52, 6973.CrossRefGoogle Scholar
[29] Schöpf, P. (1977) Gewichtete Volumsmittelwerte von Simplices, welche zufällig in einem konvexen Körper des ℝ n gewählt werden. Monatsh. Math. 83, 331337.CrossRefGoogle Scholar
[30] Wieacker, J. A. (1978) Einige Probleme der polyedrischen Approximation. Diplomarbeit, Freiburg im Breisgau.Google Scholar
[31] Woolhouse, W. (1867) Educational Times.Google Scholar