Article contents
Recursive matrix games
Published online by Cambridge University Press: 14 July 2016
Abstract
“Recursive” games were first defined and studied by Everett. Related results can be found in Gillette, Milnor and Shapley, and Blackwell and Ferguson. In this paper we introduce the notion of a recursive matrix game, which we believe eliminates the vagueness but none of the useful generality of the earlier definition. We then give an inductive proof (different from the proof in [3]) that these games have a value, with ∊-optimal stationary strategies available to each player. We also apply the result and show how a class of games studied in a different framework are games of this type and thus have a value.
Keywords
- Type
- Research Papers
- Information
- Copyright
- Copyright © Applied Probability Trust 1972
References
- 5
- Cited by