Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-10T20:06:42.509Z Has data issue: false hasContentIssue false

Reply to remarks of Professor M. Hori

Published online by Cambridge University Press:  14 July 2016

Howard Weiner*
Affiliation:
University of California at Davis

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Letters to the Editor
Copyright
Copyright © Applied Probability Trust 1980 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Akeda, Y. Hori, M. (1976) On random sequential packing in two and three dimensions. Biometrika 63, 361366.CrossRefGoogle Scholar
[2] Blaisdell, B. E. Solomon, H. (1970) On random sequential packing in the plane and a conjecture of Palásti. J. Appl. Prob. 7, 667698.Google Scholar
[3] Dvoretzky, A. Robbins, H. (1964) On the ‘parking’ problem. Publ. Math. Inst. Hungar. Acad. Sci. 9, 209225.Google Scholar
[4] Hori, M. (1979) On Weiner's proof of the Palásti conjecture. J. Appl. Probe 16,702706.Google Scholar
[5] Jodrey, W. S. Tory, E. M. (1980) Random sequential packing in Rn. J. Statist. Comput. Simulation 10, 8793.Google Scholar
[6] Renyi, A. (1958) On a one-dimensional problem concerning random space filling. Publ. Math. Inst. Hungar. Acad. Sci. 3, 109127.Google Scholar
[7] Tanemura, M. (1979) Has the Palasti conjecture been proved?: a criticism of a paper by Weiner, H. J. J. Appl. Probe 16, 697698.Google Scholar
[8] Tory, E. M. Pickard, D. K. (1979) Some comments on ‘Sequential random packing in the plane’ by Weiner, H. J. J. Appl. Prob. 16, 699702.Google Scholar
[9] Weiner, H. J. (1978) Sequential random packing in the plane. J. Appl. Probe 15,803814.Google Scholar
[10] Weiner, H. J. (1979) Reply to letters of M. Tanemura and E. M. Tory and D. K. Pickard. J. Appl. Probe 16, 706707.Google Scholar
[11] Weiner, H. J. (1980) An alternative argument for Lemma 3 and Theorem 1 of [9]. J. Appl. Probe 17, 878880 Google Scholar