No CrossRef data available.
Article contents
Some EATA properties for marked point processes
Part of:
Stochastic processes
Published online by Cambridge University Press: 14 July 2016
Abstract
We derive an ESTA property for marked point processes similar to Wolff's PASTA property for ordinary (non-marked) point processes, via a stochastic integral approach. This new ESTA property allows us to extend a known result on the conditional PASTA property and to derive an ASTA property for batch arrival processes. We also present an application of our results.
Keywords
MSC classification
Primary:
60G55: Point processes
- Type
- Research Papers
- Information
- Copyright
- Copyright © Applied Probability Trust 1995
References
[1]
Baccelli, F. and Bremaud, P. (1994) Elements of Queueing Theory, Palm-Martingale Calculus and Stochastic Recurrences.
Springer-Verlag, Berlin.Google Scholar
[2]
Bremaud, P., Kannurpatti, R. and Mazumdar, R. (1992) Event and time averages: a review. Adv. Appl. Prob.
24, 377–411.CrossRefGoogle Scholar
[3]
Bremaud, P. (1981) Point Processes and Queues, Martingale Dynamics.
Springer-Verlag, Berlin.CrossRefGoogle Scholar
[4]
Dacunha-Castelle, D. and Duflo, M. (1982) Probabilités et Statistiques, Vol. 2: Problèmes à temps mobile.
Masson, Paris.Google Scholar
[6]
Van Doorn, E. A. and Regterschot, G. J. K. (1988) Conditional PASTA. Operat. Res. Lett.
7, 229–232.CrossRefGoogle Scholar
[7]
Jacod, J. (1976) Un théorème de représentation pour les martingales discontinues. Z. Wahrscheinlichkeitsth.
34, 225–244.CrossRefGoogle Scholar
[8]
Kabanov, J. M., Liptser, R. S. and Shiryayev, A. N. (1979) Absolute continuity and singularity of locally absolutely continuous probability distributions: I. Math. USSR Sb.
35, 631–679.CrossRefGoogle Scholar
[9]
Kofman, D. and Korezlioglu, H. (1993) Loss probabilities and delay and jitter distributions in a finite buffer queue with heterogeneous batch Markovian arrival processes. In Proc. IEEE GLOBECOM'93, Houston, 830–834.CrossRefGoogle Scholar
[10]
Lucantoni, D. M. (1991) New results on the single server queue with a batch markovian arrival process,. Stoch. Models
7, 1–46.CrossRefGoogle Scholar
[11]
Neuts, M. F. (1979) A versatile Markovian point process. J. Appl. Prob.
16, 764–769.CrossRefGoogle Scholar
[12]
Rosenkrantz, W. A. and Simha, R. (1992) Some theorems on conditional Pasta: A stochastic integral approach. Operat. Res. Lett.
11, 173–177.CrossRefGoogle Scholar
[13]
Wolff, R. W. (1982) Poisson arrivals see time averages. Operat. Res.
30, 223–231.CrossRefGoogle Scholar