Article contents
Spectral analysis for a random process on the circle
Published online by Cambridge University Press: 14 July 2016
Abstract
A random process on the circle is a family of random variables X(P,t) indexed by the position P on the unit circle and by the time t (t = 0, + 1, ···). For a homogeneous and stationary process, using its Fourier series expansion, we deduce a spectral representation of the covariance function. The purpose of the paper is to develop a spectral analysis when X(P,t) is observed at all the points on the circle at t = 0, 1, ···, T – 1. The asymptotic distribution of the family of finite Fourier transforms, of the family of periodograms and of the family of spectral densities estimates are obtained from results available for vector-valued time series. Also, a sample covariance function for X (P,t) is defined and its asymptotic distribution derived.
Keywords
- Type
- Research Papers
- Information
- Copyright
- Copyright © Applied Probability Trust 1972
References
- 8
- Cited by