Article contents
Strategic equilibrium versus global optimum for a pair of competing servers
Published online by Cambridge University Press: 14 July 2016
Abstract
Christ and Avi-Itzhak (2002) analyzed a queueing system with two competing servers who determine their service rates so as to optimize their individual utilities. The system is formulated as a two-person game; Christ and Avi-Itzhak proved the existence of a unique Nash equilibrium which is symmetric. In this paper, we explore globally optimal solutions. We prove that the unique Nash equilibrium is generally strictly inferior to a globally optimal solution and that optimal solutions are symmetric and require the servers to adopt service rates that are smaller than those occurring in equilibrium. Furthermore, given a symmetric globally optimal solution, we show how to impose linear penalties on the service rates so that the given optimal solution becomes a unique Nash equilibrium. When service rates are not observable, we show how the same effect is achieved by imposing linear penalties on a corresponding signal.
MSC classification
- Type
- Short Communications
- Information
- Copyright
- © Applied Probability Trust 2006
References
- 7
- Cited by