Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-10T19:31:27.645Z Has data issue: false hasContentIssue false

A symmetry-based constructive approach to probability densities for one-dimensional diffusion processes

Published online by Cambridge University Press:  14 July 2016

V. Giorno*
Affiliation:
University of Salerno
A. G. Nobile*
Affiliation:
University of Salerno
L. M. Ricciardi*
Affiliation:
University of Naples
*
Postal address: Dipartimento di Informatica e Applicazioni, Università di Salerno, Salerno, Italy.
Postal address: Dipartimento di Informatica e Applicazioni, Università di Salerno, Salerno, Italy.
∗∗ Postal address: Dipartimento di Matematica e Applicazioni, Università di Napoli, Via Mezzocannone 8, 80134 Napoli, Italy.

Abstract

Special symmetry conditions on the transition p.d.f. of one-dimensional time-homogeneous diffusion processes with natural boundaries are investigated and exploited to derive closed-form results concerning the transition p.d.f.'s in the presence of absorbing and reflecting boundaries and the first-passage-time p.d.f. through time-dependent boundaries.

Type
Research Papers
Copyright
Copyright © Applied Probability Trust 1989 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Blake, I. F. and Lindsey, W. C. (1973) Level crossing problems for random processes. IEEE Trans. Inf. Theory 19, 295315.Google Scholar
[2] Buonocore, A., Nobile, A. G. and Ricciardi, L. M. (1987) A new integral equation for the evaluation of first-passage-time probability densities. Adv. Appl. Prob. 19, 784800.Google Scholar
[3] Cox, D. R. and Miller, H. D. (1970) The Theory of Stochastic Processes. Methuen, London.Google Scholar
[4] Daniels, H. E. (1969) The minimum of a stationary Markov process superimposed on a U-shaped trend. J. Appl. Prob. 6, 399408.Google Scholar
[5] Feller, W. (1952) The parabolic differential equations and the associated semigroup-transformations. Ann. Math. 55, 468518.CrossRefGoogle Scholar
[6] Giorno, V., Lánský, P., Nobile, A. G. and Ricciardi, L. M. (1988) Diffusion approximation and first-passage-time problem for a model neuron. III. A birth-and-death process approach. Biol. Cybernetics 58, 387404.CrossRefGoogle Scholar
[7] Giorno, V., Nobile, A. G. and Ricciardi, L. M. (1986) On some diffusion approximations to queueing systems. Adv. Appl. Prob. 18, 9911014.Google Scholar
[8] Giorno, V., Nobile, A. G. and Ricciardi, L. M. (1987) On some time-non-homogeneous diffusion approximations to queueing systems. Adv. Appl. Prob. 19, 974994.Google Scholar
[9] Giorno, V., Nobile, A. G. and Ricciardi, L. M. (1988) A new approach to the construction of first-passage-time densities. In Cybernetics and Systems 1988, ed. Trappl, R., Kluwer Academic Publishers, Dordrecht, 375381.Google Scholar
[10] Giorno, V., Nobile, A. G., Ricciardi, L. M. and Sato, S. (1989) On the evaluation of firstpassage-time probability densities via nonsingular integral equations. Adv. Appl. Prob. 21, 2036.Google Scholar
[11] Heath, R. A. (1981) A tandem random walk model for psychological discrimination. Br. J. Math. Statist. Psychol. 34, 7692.Google Scholar
[12] Hongler, M. O. (1979) Exact solutions of a class of non-linear Fokker–Planck equations. Phys. Lett. 75A, 34.CrossRefGoogle Scholar
[13] Karlin, S. and Taylor, H. M. (1975) A First Course in Stochastic Processes. Academic Press, New York.Google Scholar
[14] Lánský, P. and Lánská, V. (1987) Diffusion approximations of the neuronal model with synaptic reversal potentials. Biol. Cybernetics 56, 1926.Google Scholar
[15] Maruyama, T. (1977) Stochastic Problems in Population Genetics. Lecture Notes in Biomathematics 17, Springer-Verlag, Berlin.Google Scholar
[16] Nobile, A. G. and Ricciardi, L. M. (1984) Growth with regulation in fluctuating environments. I. Alternative logistic-like diffusion models. Biol. Cybernetics 49, 179188.Google Scholar
[17] Nobile, A. G. and Ricciardi, L. M. (1984) Growth with regulation in fluctuating environments. II. Intrinsic lower bounds to population size. Biol. Cybernetics 50, 285299.CrossRefGoogle ScholarPubMed
[18] Ricciardi, L. M. (1986) Stochastic population theory: Diffusion processes. In Mathematical Ecology, ed. Hallam, T. G. and Levin, S. Springer-Verlag, Berlin, 191238.Google Scholar
[19] Tuckwell, H. C. (1988) Nonlinear random reaction-diffusion systems. In Biomathematics and Related Computational Problems, ed. Ricciardi, L. M., Kluwer Academic Publishers, Dordrecht, 581590.Google Scholar