Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-10T07:54:27.149Z Has data issue: false hasContentIssue false

Synchronization via Interacting Reinforcement

Published online by Cambridge University Press:  19 February 2016

Paolo Dai Pra*
Affiliation:
Università degli Studi di Padova
Pierre-Yves Louis*
Affiliation:
Université de Poitiers
Ida G. Minelli*
Affiliation:
Università degli Studi dell'Aquila
*
Postal address: Dipartimento di Matematica, Università degli Studi di Padova, via Trieste 63, I-35121 Padova, Italy. Email address: daipra@math.unipd.it.
∗∗ Postal address: Laboratoire de Mathématiques et Applications, UMR 7348 CNRS, Université de Poitiers, 11 Boulevard Marie et Pierre Curie, 86962 Technopole du Futuroscope, Chasseneuil Cedex, France. Email address: Email address: pierre.yves.louis@univ-poitiers.fr.
∗∗∗ Postal address: Dipartimento di Ingegneria e Scienze dell'Informazione e Matematica, Università degli Studi dell'Aquila, Via Vetoio (Coppito 1), 67100 Coppito (AQ), Italy. Email address: ida.minelli@dm.univaq.it.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We consider a system of urns of Pólya type, containing balls of two colors; the reinforcement of each urn depends on both the content of the urn and the average content of all urns. We show that the urns synchronize almost surely, in the sense that the fraction of balls of a given color converges almost surely as time tends to ∞ to the same limit for all urns. A normal approximation for a large number of urns is also obtained.

Type
Research Article
Copyright
© Applied Probability Trust 

References

Acebrón, J. et al. (2005). The Kuramoto model: a simple paradigm for synchronization phenomena. Rev. Modern Phys. 77, 137.CrossRefGoogle Scholar
Berglund, N., Fernandez, B. and Gentz, B. (2007). Metastability in interacting nonlinear stochastic differential equations. I. From weak coupling to synchronization. Nonlinearity 20, 25512581.Google Scholar
Bovier, A. (2006). Metastability: a potential theoretic approach. In International Congress of Mathematicians, Vol. III, European Mathenatical Society, Zürich, pp. 499518.Google Scholar
Cirillo, P., Gallegati, M. and Hüsler, J. (2012). A Pólya lattice model to study leverage dynamics and contagious financial fragility. Adv. Complex Systems 15.Google Scholar
Klenke, A. (2008). Probability Theory. A Comprehensive Course. Springer, London.Google Scholar
Kuramoto, Y. (2003). Chemical Oscillations, Waves, and Turbulence. Dover, Mineola, NY.Google Scholar
Launay, M. (2011). Interacting urn models. Preprint. Available at http://arxiv.org/abs/1101.1410.Google Scholar
Launay, M. and Limic, V. (2012). Generalized interacting urn models. Preprint. Available at http://arxiv.org/abs/1207.5635.Google Scholar
Marsili, M. and Valleriani, A. (1998). Self organization of interacting Pólya urns. Europ. Physical J. B 3, 417420.CrossRefGoogle Scholar
Métivier, M. (1982). Semimartingales (de Gruyter Studies Math. 2). De Gruyter, Berlin.CrossRefGoogle Scholar
Paganoni, A. M. and Secchi, P. (2004). Interacting reinforced-urn systems. Adv. Appl. Prob. 36, 791804.CrossRefGoogle Scholar
Pemantle, R. (2007). A survey of random processes with reinforcement. Prob. Surveys 4, 179.Google Scholar
Prindle, A. et al. (2011). A sensing array of radically coupled genetic ‘biopixels’. Nature 481, 3944.Google Scholar