Article contents
A Technique for Computing the PDFs and CDFs of Nonnegative Infinitely Divisible Random Variables
Published online by Cambridge University Press: 14 July 2016
Abstract
We present a method for computing the probability density function (PDF) and the cumulative distribution function (CDF) of a nonnegative infinitely divisible random variable X. Our method uses the Lévy-Khintchine representation of the Laplace transform Ee-λX = e-ϕ(λ), where ϕ is the Laplace exponent. We apply the Post-Widder method for Laplace transform inversion combined with a sequence convergence accelerator to obtain accurate results. We demonstrate this technique on several examples, including the stable distribution, mixtures thereof, and integrals with respect to nonnegative Lévy processes.
Keywords
MSC classification
- Type
- Research Article
- Information
- Copyright
- Copyright © Applied Probability Trust 2011
References
- 9
- Cited by