Published online by Cambridge University Press: 14 July 2016
We derive an integral equation for the transient probabilities and expected number in the queue for the multiserver queue with Poisson arrivals, exponential service for time-varying arrival and departure rates, and a time-varying number of servers. The method is a straightforward application of generating functions. We can express pĉ−1(t), the probability that ĉ − 1 customers are in the queue or being served, in terms of a Volterra equation of the second kind, where ĉ is the maximum number of servers working during the day. Each of the other transient probabilities is expressed in terms of integral equations in pĉ−1(t) and the transition probabilities of a certain time-dependent random walk. In this random walk, the rate of steps to the right equals the arrival rate of the queue and the rate of steps to the left equals the departure rate of the queue when all servers are busy.