Published online by Cambridge University Press: 14 July 2016
We introduce a class of discrete-time two-sex branching processes where the offspring probability distribution and the mating function are governed by an environmental process. It is assumed that the environmental process is formed by independent but not necessarily identically distributed random vectors. For such a class, we determine some relationships among the probability generating functions involved in the mathematical model and derive expressions for the main moments. Also, by considering different probabilistic approaches we establish several results concerning the extinction probability. A simulated example is presented as an illustration.