No CrossRef data available.
Published online by Cambridge University Press: 26 March 2019
OBJECTIVES/SPECIFIC AIMS: Although two Ribeye protein isoforms have been identified in zebrafish, information about the identities of their variants is incomplete. This study aims to identify and characterize both of the Ribeye isoforms and their splice variants. METHODS/STUDY POPULATION: Immunohistochemistry was performed on the retina and neuromasts of zebrafish larva and adults.Ribeye expression was analyzed by western blot. Ribeye proteins will be separated, isolated and identified by mass spectrophotometry. RESULTS/ANTICIPATED RESULTS: Immunohistochemistry performed on larval and adult zebrafish retinas revealed the expression of Ribeye A in the inner and outer plexiform layers. Ribeye B was likewise expressed in both plexiform layers in larval zebrafish, but more pronounced expression in the outer plexiform layer in the adult zebrafish retina. Immunohistochemical experiments also demonstrated the co-expression of both Ribeye isoforms in the hair cells of both larval and adult neuromasts. Analysis of Ribeye expression by western blot showed the presence of more than the three previously identified variants. Current experiments are being conducted to characterize the additional Ribeye variants. We expect to identify the residual Ribeye protein as a result of this analysis. DISCUSSION/SIGNIFICANCE OF IMPACT: This study is necessary in order to gain a clear understanding of Ribeye expression in zebrafish tissues. Doing so will enable us to target this protein for gene editing to address outstanding questions about the mechanisms that govern ribbon synapse function. Synapse and synapse-associated proteins are involved in a wide-array of diseases that arise as a result of their dysfunction (e.g. blindness, deafness, bradycardia, autism spectrum disorders, and schizophrenia). Thus, it is important for us to identify the shared and distinct mechanisms that give rise to diseases associated with synaptic dysregulation. Such information could provide the basis for novel therapeutic interventions for synaptic disorders.