Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-14T14:24:34.289Z Has data issue: false hasContentIssue false

427. The acid phosphatase of cows' milk: I. Some properties of the enzyme

Published online by Cambridge University Press:  01 June 2009

J. E. C. Mullen
Affiliation:
National Institute for Research in Dairying, University of Reading

Extract

1. The acid phosphatase content of milk is reasonably constant from quarter to quarter in normal uninfected cows.

2. The acid phosphatase content of milk from infected quarters is enhanced in comparison with the uninfected quarters. The differences found were from 4·1 to over 50 enzyme units per 100 ml. milk.

3. It has been shown that a Streptococcus agalactiae suspension is capable of hydrolysing phenylphosphate at pH 4–1, and it is suggested that this organism is largely responsible for the enhanced enzyme content of the milk from the infected udder.

Type
Original Articles
Copyright
Copyright © Proprietors of Journal of Dairy Research 1950

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1)Huggins, H. & Talalay, P. (1948). J. biol. Chem. 159, 399.CrossRefGoogle Scholar
(2)Giri, K. V. (1936). Hoppe-Seyl. Z. 243, 57.CrossRefGoogle Scholar
(3)Vittu, C. (1946). C.R. Soc. Biol., Paris, 140, 225.Google Scholar
(4)Martland, M., Hansman, F. S. & Robison, R. (1924). Biochem. J. 18, 1152.CrossRefGoogle Scholar
(5)Gutman, E. B. & Gutman, A. B. (1940). J. biol. Chem. 136, 201.CrossRefGoogle Scholar
(6)King, E. J. & Armstrong, A. R. (1934). Canad. med. Ass. J. 31, 376.Google Scholar
(7)Kolthoff, I. M. (1925). J. biol. Chem. 63, 135.CrossRefGoogle Scholar
(8)Folley, S. J. & Kay, H. D. (1935). Biochem. J. 29, 1837.CrossRefGoogle Scholar
(9)Haldane, J. B. S. (1930). Enzymes. London: Longmans, Green and Co.Google Scholar
(10)Sumner, J. B. (1944). Science, 100, 413.CrossRefGoogle Scholar
(11)Roche, J., Thoai, N. V. & Baudin, J. (1942). C.R. Acad. Sci., Paris, 215, 386.Google Scholar
(12)Folley, S. J. & Kay, H. D. (1936). Ergebn. Enzymforsch. 5, 159.Google Scholar
(13)Sizer, I. W. (1943). Advances in Enzymology, 3, 35.Google Scholar
(14)Riisfeldt, O. (1946). Acta path. microbiol. scand. Suppl. p. 58.Google Scholar
(15)Kay, H. D. (1946). Nature, Land., 157, 511.CrossRefGoogle Scholar

REFERENCES

(1)Mullen, J. E. C. (1950). J. Dairy Res. 17, 288.CrossRefGoogle Scholar
(2)Folley, S. J. & Kay, H. D. (1936). Ergebn. Enzymforsch. 5, 159.Google Scholar
(3)Folley, S. J. & Kay, H. D. (1936). Enzymologia, 1, 48.Google Scholar
(4)Gutman, E. B. & Gutman, A. B. (1940). J. biol. Chem. 136, 201.CrossRefGoogle Scholar
(5)Fisher, R. A. (1938). Statistical Methods for Research Workers, 7th ed.Edinburgh: Oliver and Boyd.Google Scholar
(6)Bailey, G. L. (1948). Private communication.CrossRefGoogle Scholar
(7)Azarme, E. (1938). J. Dairy Res. 9, 121.CrossRefGoogle Scholar
(8)Richmond, H. D., Elsdon, G. D. & Walker, G. H. (1942). Richmond's Dairy Chemistry, 4th ed.London: Charles Griffin and Co. Ltd.Google Scholar

REFERENCES

(1)Mullen, J. E. C. (1950). J. Dairy Res. 17, 288.CrossRefGoogle Scholar
(2)Mullen, J. E. C. (1950). J. Dairy Res. 17, 295.Google Scholar
(3)McDowall, F. H. (1945). N.Z. J. Sci. Tech. 27 (sec. A), 258.Google Scholar
(4)Gutman, E. B. & Gutman, A. B. (1940). J. biol. Chem. 136, 201.CrossRefGoogle Scholar