Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-28T02:40:58.399Z Has data issue: false hasContentIssue false

515. Cheddar-cheese flavour and its relation to tyramine production by lactic acid bacteria

Published online by Cambridge University Press:  01 June 2009

J. C. Dacre
Affiliation:
The Dairy Research Institute (N.Z.), Palmerston North, New Zealand

Extract

1. Cultures of Str. faecalis, L. plantarum and a strain of Leuconostoc, when added to cheese milk, all brought about an increase in Cheddar flavour intensity in the resultant cheese.

2. Examination of the cheeses for tyramine content showed that the formation of the amine bore no relationship to the increases in flavour intensity. The production of tyramine appeared to be merely incidental in the cheese-ripening process.

3. A survey among the lactic acid bacteria disclosed only one species containing a significant amount of the L( – )-tyrosine decarboxylase enzyme—L. brevis. This species added to cheese milk causes an objectionable ‘yeasty’ flavour in the final cheese.

Type
Original Articles
Copyright
Copyright © Proprietors of Journal of Dairy Research 1953

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1)Dahlberg, A. C. & Kosikowsky, F. V. (1948). J. Dairy Sci. 31, 275–84.CrossRefGoogle Scholar
(2)Kosikowsky, F. V. & Dahlberg, A. C. (1948). J. Dairy Sci. 31, 285–92.CrossRefGoogle Scholar
(3)Kosikowsky, F. V. & Dahlberg, A. C. (1948). J. Dairy Sci. 31, 293303.CrossRefGoogle Scholar
(4)Dahlberg, A. C. & Kosikowsky, F. V. (1948). J. Dairy Sci. 31, 305–14.CrossRefGoogle Scholar
(5)Dahlberg, A. C. & Kosikowsky, F. V. (1949). J. Dairy Sci. 32, 316–21.CrossRefGoogle Scholar
(6)Dahlberg, A. C. & Kosikowsky, F. V. (1949). J. Dairy Sci. 32, 630–6.CrossRefGoogle Scholar
(7)Gale, E. F. (1940). Biochem. J. 34, 846–52.CrossRefGoogle Scholar
(8)Gale, E. F. (1946). Advanc. Enzymol. 6, 132.Google Scholar
(9)Rodwell, A. W. (1948). Biochem. J. 43, xxxix.Google Scholar
(10)Lagerborg, V. A. & Clapper, W. E. (1952). J. Bact. 63, 393–7.CrossRefGoogle Scholar
(11)Hupfer, J. A., Sanders, G. P. & Tittsler, R. P. (1950). J. Dairy Sci. 33, 401.Google Scholar
(12)Sherwood, I. R. (1939). J. Dairy Res. 10, 426–48.CrossRefGoogle Scholar
(13)Kosikowsky, F. V. & Dahlberg, A. C. (1950). J. Dairy Sci. 33, 438–41.CrossRefGoogle Scholar
(14)Tittsler, R. P., Sanders, G. P., Lochry, H. R. & Sager, O. S. (1948). J. Dairy Sci. 31, 716.Google Scholar
(15)Sharpe, E. M. (1948). Proc. Soc. appl. Bact. 11, 1317.Google Scholar
(16)Hunter, G. J. E. (1946). J. Dairy Res. 14, 283–90.CrossRefGoogle Scholar
(17)Consden, R., Gordon, A. H. & Martin, A. J. P. (1944). Biochem. J. 38, 224–32.CrossRefGoogle Scholar
(18)Woiwod, A. J. (1949). J. gen. Microbiol. 3, 312–18.CrossRefGoogle Scholar
(19)Bremner, J. M. & Kenten, R. H. (1951). Biochem. J. 49, 651–5.CrossRefGoogle Scholar
(20)Alford, J. A. & Frazier, W. C. (1950). J. Dairy Sci. 33, 107–14, 115–20.CrossRefGoogle Scholar
(21)Bergey's Manual of Determinative Bacteriology (1948). 6th. ed., 305380. London: Bailliére, Tindall and Cox.Google Scholar