Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-26T07:46:08.208Z Has data issue: false hasContentIssue false

HPLC and GLC analysis of the triglyceride composition of bovine, ovine and caprine milk fat

Published online by Cambridge University Press:  01 June 2009

Luis J. R. Barron
Affiliation:
Instituto de Fermentaciones Industriales(CSIC) Juan de la Cierva 3, E-28006 Madrid, Spain
M. Teresa G. Hierro
Affiliation:
Instituto de Fermentaciones Industriales(CSIC) Juan de la Cierva 3, E-28006 Madrid, Spain
Guillermo Santa-María
Affiliation:
Instituto de Fermentaciones Industriales(CSIC) Juan de la Cierva 3, E-28006 Madrid, Spain

Summary

A total of 116 molecular species of triglycerides were identified in milk fat, using a combination of HPLC and GLC. Triglyceride composition was predicted from the random composition, which was calculated on the basis of the mole fractions of the main fatty acids making up the total triglyceride fraction. The qualitative composition of the milk fat was similar in cows', ewes' and goats' milk. In all three milks the partition number of the main triglycerides was 46, but the proportions of the triglycerides with partition numbers of 34, 38, 42, and 48 exhibited substantial differences among the milks of the three species.

Type
Original Articles
Copyright
Copyright © Proprietors of Journal of Dairy Research 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Addeo, F. & Kuzdzal-Savoie, S. 1980 [The triglyceride composition of buffalo milk. Comparison with the triglyceride composition of the milks of other species.] Lait 60 1426CrossRefGoogle Scholar
Arumughan, C. & Narayanan, K. M. 1982 Triacylglycerol composition of cow milk fat. Journal of Food Science and Technology, India 19 7174Google Scholar
Bailey, A. E. 1951 Industrial Oil and Fat Products, 2nd edn, p. 834. New York: InterscienceGoogle Scholar
Barron, L. J. R., Celaá, M. V., Santa-María, G. & Corzo, N. 1988 Determination of the triglyceride composition of grapes by HPLC. Chromatographia 25 609612CrossRefGoogle Scholar
Barron, L. J. R. & Santa-María, G. 1989 HPLC analysis of complex mixtures of triglycerides using gradient elutions and an ultraviolet detector. Chromatographia 28 183188CrossRefGoogle Scholar
Barron, L. J. R., Santa-María, G. & Díez Masa, J. C. 1987 Influence of bonded-phase column type, mobile phase composition, temperature and flow-rate in the analysis of triglycerides by reverse-phase high performance liquid chromatography. Journal of Liquid Chromatography 10 31933212CrossRefGoogle Scholar
Blank, M. L. & Privett, O. S. 1964 Structure of milk fat triglycerides. Journal of Dairy Science 47 481488CrossRefGoogle Scholar
Bugaut, M. & Bezard, J. 1979 [Comparison of the glyceride structure of copra and palm kernel oil. 3. Types of triglycerides.] Oleagineaux 34 7787Google Scholar
Caboni, M. F., Massari, A., Lercker, G. & Losi, G. 1982 [Milk fat composition. Note 1. The apolar lipids.] Scienza e Tecnica Lattiero-Casearia 33 426442Google Scholar
Christie, W. W. & Clapperton, J. L. 1982 Structures of the triglycerides of cows' milk, fortified milks (including infant formulae), and human milk. Journal of the Society of Dairy Technology 35 2224CrossRefGoogle Scholar
El-Hamdy, A. H. & Perkins, E. G. 1981 High performance reversed phase chromatography of natural triglyceride mixtures: critical pair separation. Journal of the American Oil Chemists' Society 58 867872CrossRefGoogle Scholar
Farag, R. S., Hewedi, M. M., Abo-Raya, S. H. & Khalifa, H. H. 1984 Detection of cow's milk admixture to buffalo's milk. Grasas y Aceites 35 181184Google Scholar
Fiebig, H. J. 1985 [HPLC separation of triglycerides.] Fette Seifen Anstrichmittel 87 5357CrossRefGoogle Scholar
Frede, E. 1986 Improved separation of triglycerides by special tempering procedures. Chromatoyraphia 21 2936CrossRefGoogle Scholar
Frede, E. & Thiele, H. 1987 Analysis of milkfat by HPLC. Journal of the American Oil Chemists' Society 64 521528CrossRefGoogle Scholar
Herslöf, B., Podlaha, O. & Toregard, B. 1979 High-performance liquid chromatography of triglycerides. Journal of the American Oil Chemists' Society 56 864866CrossRefGoogle Scholar
Juárez, M. 1983 [Applications of Chromatographie techniques to quality control of milk products.] Revista de Agroquímica y Technología de Alimentos 23 467484Google Scholar
Juárez, M. & Martínez-Castro, I. 1980 [Analytical criteria for detection of extraneous fat in milk fat.] Alimentaria No. 109 6164, 8186Google Scholar
Kankare, V., Antila, V., Harvala, T. & Komppa, V. 1989 Extraction of milk fat with supercritical carbon dioxide. Milchwissenschaft 44 407411Google Scholar
Lund, P. 1988 Analysis of butterfat triglycerides by capillary gas chromatography. Milchwissenschaft 43 159161Google Scholar
Nurmela, K. V. V. & Satama, L. T. 1988 Quantitative analysis of triglycerides by high performance liquid chromatography using non-linear gradient elution and flame ionization detector. Journal of Chromatography 435 139148CrossRefGoogle Scholar
Nutter, L. J. & Privett, O. S. 1967 Structures of triglycerides of bovine milk serum. Short chain triglycerides. Journal of Dairy Science 50 11941199CrossRefGoogle Scholar
Parodi, P. W. 1970 Fatty acid composition of Australian butter and milk fats. Australian Journal of Dairy Technology 25 200205Google Scholar
Parodi, P. W. 1980 Separation of milk fat triglycerides into classes by silver ion adsorption thin-layer chromatography. Australian Journal of Dairy Technology 35 1722Google Scholar
Pinto, M. C., Fernandez De La Requera, P. B. & Villanueva, B. S. 1987 [Detection and quantification of milk fat adulteration. Multiple regression analysis.] Agro Sur 15 3238Google Scholar
Shukla, V. K. S., Schiøtz Nielsen, W. & Batsberg, W. 1983 A simple and direct procedure for the evaluation of triglyceride composition of cocoa butters by high performance liquid chromatography. A comparison with the existing TLC-GC method. Fette Seifen Anstrichmittel 85 274278CrossRefGoogle Scholar
Singleton, J. A. & Pattee, H. W. 1984 Optimization of parameters for the analysis of triglyceride by reverse phase HPLC using a UV detector at 210 nm. Journal of the American Oil Chemists' Society 61 761766CrossRefGoogle Scholar
Soliman, M. A. & Younes, N. A. 1986 Adulterated butterfat: fatty acid composition of triglycerides and 2-monoglycerides. Journal of the American Oil Chemists' Society 63 248250CrossRefGoogle Scholar
Timms, R. E. 1980 Detection and quantification of non-milk fat in mixtures of milk and non-milk fats. Journal of Dairy Research 47 295303CrossRefGoogle Scholar
Utrilla, R. M., Juárez, M. & Martínez, I. 1976 [The time factor in the conversion of fats into methyl esters.] Grasas y Aceites 27, 323327Google Scholar
Wada, S., Koizumi, C. & Nonaka, J. 1977 Analysis of triglycerides of soybean oil by high performance liquid chromatography. Jukagaku 26 9599Google Scholar
Walstra, P. & Jenness, R. 1984 Dairy Chemistry and Physics, p. 54. New York: John Wiley and Sons, Inc.Google Scholar
Weber, K., Schulte, E. & Thier, H. P. 1988 [Separation of triglycerides of cows' and human milk by HPLC and investigation of the fractions of GC.] Fat Science and Technology 90 341344Google Scholar
Wojtusik, M. J., Brown, P. R. & Turcotte, J. G. 1988 UV and RI detection for the HPLC analysis of triglycerides in fish oils. Biochromatography 3 7683Google Scholar
Żegarska, Z. & Kuzdzal-Savoie, S. 1988 Seasonal effects on the fatty acids content in milk fat. Milchwissenschaft 43 777779Google Scholar