Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-26T06:54:10.076Z Has data issue: false hasContentIssue false

Identification of Bacillus strains isolated from milk and cream with classical and nucleic acid hybridization methods

Published online by Cambridge University Press:  01 June 2009

Ralf Tatzel
Affiliation:
Bayerische Landesanstalt für Ernährung, 80638 München, Deutschland
Wolfgang Ludwig
Affiliation:
Lehrstuhl für Mikrobiologie, Technische Universität München, 80290 München, Deutschland
Karl Heinz Schleifer
Affiliation:
Lehrstuhl für Mikrobiologie, Technische Universität München, 80290 München, Deutschland
Peter R. Wallnöfer
Affiliation:
Bayerische Landesanstalt für Ernährung, 80638 München, Deutschland

Summary

A total of 529 bacterial strains have been isolated from milk and cream sampled at different sites in a dairy production plant under conditions selective for aerobic sporeforming bacteria. Identification with classical methods based on morphological, physiological and biochemical criteria showed Bacillus licheniformis to be the most frequently occurring Bacillus sp. The investigation also revealed 62 unidentified strains. Classical identification methods were time consuming (3–7d), lacked specificity and —because of their dependence on phenotypic gene expression—sometimes produced ambiguous results. Consequently, a colony hybridization method developed for the identification of B. licheniformis strains and using non-radioactive labelled 23S rRNA targeted oligonucleotide probes was also used. Identification of B. licheniformis with borth classical and hybridization methods revealed diverging identification results for 70 strains.

Type
Original articles
Copyright
Copyright © Proprietors of Journal of Dairy Research 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Baird-Parker, A. C. 1963 A classification of micrococci and staphylococci based on physiological and biochemical tests. Journal of General Microbiology 30 409427CrossRefGoogle ScholarPubMed
Carlisle, G. E. & Falkinham, J. O. 1989 Enzyme activities and antibiotic susceptibility of colonial variants of Bacillus subtilis and Bacillus licheniformis. Applied and Environmental Microbiology 55 30263028CrossRefGoogle ScholarPubMed
Cromie, S. J., Dommett, T. W. & Schmidt, D. 1989 Changes in the microflora of milk with different pasteurization and storage conditions and aseptic packaging. Australian Journal of Dairy Technology 44 7477Google Scholar
Deák, T. & Timár, É. 1988 Simplified identification of aerobic spore-formers in the investigation of foods. International Journal of Food Microbiology 6 115125CrossRefGoogle ScholarPubMed
Gayer-Herkert, G. 1992 [Molecular methods for the assay of microorganisms in mixed populations—a review of the most recent literature.] BioEngineering 8 5564Google Scholar
Gordon, R. E., Haynes, W. C. & Pang, C. H.-N. 1973 The genus Bacillus. Washington, DC: US Department of Agriculture (Agriculture Handbook no. 427)Google Scholar
Griffiths, M. W. & Phillips, J. D. 1990 Strategies to control the outgrowth of spores of psychrotrophic Bacillus spp. in dairy products. I. Use of naturally-occurring materials. Milchwissenschaft 45 621626Google Scholar
Grunstein, M. & Hogness, D. S. 1975 Colony hybridization: a method for the isolation of cloned DNAs that contain a specific gene. Proceedings of the National Academy of Sciences, USA 72 39613965CrossRefGoogle ScholarPubMed
Kramer, J. M. & Gilbert, R. J. 1989 Bacillus cereus and other Bacillus species. In Foodborne Bacterial Pathogens, pp. 2170 (Ed. Doyle, M. P.). New York: Marcel Dekker (Food Science and Technology 31)Google Scholar
Meer, R. R., Baker, J., Bodyfelt, F. W. & Griffiths, M. W. 1991 Psychrotrophic Bacillus spp. in fluid milk products: a review. Journal of Food Protection 54 969979CrossRefGoogle ScholarPubMed
Norris, J. R., Berkeley, R. C. W., Logan, N. A. & O'Donnell, A. G. 1981 The Genera Bacillus and Sporolactobacillus. In The Prokaryotes, pp. 17111742 (Eds Starr, M. P., Stolp, H., Trüper, H. G., Balows, A. and Schlegel, H. G.). New York: Springer VerlagGoogle Scholar
Rajarathinam, R., Shankar, P. A. & Laxminarayana, H. 1986 Incidence of aerobic spore-forming bacteria in milk. Indian Journal of Dairy Science 39 335336Google Scholar
Schleifer, K. H. 1990 DNA probes in food microbiology. Food Biotechnology 4 585598CrossRefGoogle Scholar
Sneath, P. H. A. 1986 Endospore-forming Gram-positive rods and cocci. In Bergey's Manual of Systematic Bacteriology, vol. 2, pp. 11041207 (Eds Sneath, P. H. A., Mair, N. S., Sharpe, M. E. and Holt, J. G.). Baltimore, MD: Williams and WilkinsGoogle Scholar
Tatzel, R., Ludwig, W., Schleifer, K. H. & Wallnöfer, P. R. 1994 Identification of Bacillus licheniformis by colony hybridization with 23S rRNA-targeted oligonucleotide probes. Systematic and Applied Bacteriology 17 99103Google Scholar
Waes, G. 1976 Aerobic mesophilic spores in raw milk. Milchwissenschaft 31 521525Google Scholar