Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-10T14:02:30.341Z Has data issue: false hasContentIssue false

Influence of pressure release rate and protein concentration on the formation of pressure-induced casein structures

Published online by Cambridge University Press:  30 April 2007

Eva Merel-Rausch
Affiliation:
Institute of Food Science and Biotechnology, University of Hohenheim, Garbenstr. 21, D-70599 Stuttgart, Germany
Ulrich Kulozik
Affiliation:
Institute of Food Process Engineering and Dairy Technology, Technical University of Munich, Weihenstephaner Berg 1, D-85354 Freising, Germany
Jörg Hinrichs*
Affiliation:
Institute of Food Science and Biotechnology, University of Hohenheim, Garbenstr. 21, D-70599 Stuttgart, Germany
*
*For correspondence; e-mail: jh-lth@uni-hohenheim.de

Abstract

The formation of pressure-induced casein structures (600 MPa for 30 min at 30°C) was investigated for different pressure release rates (20 to 600 MPa min−1) and casein contents (1 to 15 g/100 ml). Structures from liquid (sol) to solid (gel) were observed. The higher the protein content and the pressure release rate, the higher was the dynamic viscosity. A firm gel was built up at a casein content of 7 g/100 ml for a pressure release rate of 600 MPa min−1, while lower release rates resulted in less firm gels (200 MPa min−1) or liquid structures (20 MPa min−1). In a 5 g/100 ml casein solution and at a pressure release rate of 600 MPa min−1, casein aggregates were generated which were built from smaller casein particles with a larger hydrodynamic diameter and higher voluminosity than in the untreated solution. After a slow release rate casein micelles had a smaller hydrodynamic diameter and a lower voluminosity, but were similar in shape and diameter as compared with the micelles in solution before high pressure treatment.

Type
Research Article
Copyright
Copyright © Proprietors of Journal of Dairy Research 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbasi, S & Dickinson, E 2002 High-pressure-induced rheological changes of low-methoxyl pectin plus micellar casein mixtures. Journal of Agricultural and Food Chemistry 50 35593565CrossRefGoogle ScholarPubMed
Anema, SG, Lowe, EK & Stockmann, R 2005 Particle size changes and casein solubilisation in high-pressure-treated skim milk. Food Hydrocolloids 19 257267CrossRefGoogle Scholar
Arias, M, López-Fandiño, R & Olano, A 2000 Influence of pH on the effects of high pressure on milk proteins. Milchwissenschaft 55 (4) 191194Google Scholar
Carter, J, Knox, D & Rosenberg, A 1978 Pressure effects on folded proteins in solution: hydrogen exchange at elevated pressures. The Journal of Biochemical Chemistry 253 19471953Google ScholarPubMed
Desobry-Banon, S, Richard, F & Hardy, J 1994 Study of acid and rennet coagulation of high-pressurized milk. Journal of Dairy Science 77 (11) 32673274CrossRefGoogle Scholar
Einstein, A 1906 A new determination of molecular dimension. Annalen der Physik 19 (4) 289306CrossRefGoogle Scholar
Fertsch, B, Müller, M & Hinrichs, J 2003 Firmness of pressure-induced casein and whey protein gels modulated by holding time and rate of pressure release. Innovative Food Science and Emerging Technologies 4 143150CrossRefGoogle Scholar
García-Risco, MR, Olano, A, Ramos, M & López-Fandiño, R 2000 Micellar changes induced by high pressure. Influence in the proteolytic activity and organoleptic properties of milk. Journal of Dairy Science 83 (10) 21842189CrossRefGoogle Scholar
Gaucheron, F, Famelart, MH, Mariette, F, Raulot, K, Michel, F & Le Graet, Y 1997 Combined effects of temperature and high-pressure treatments on physicochemical characteristics of skim milk. Food Chemistry 59 (3) 439447CrossRefGoogle Scholar
Gebhardt, R, Doster, W & Kulozik, U 2005 Pressure-induced dissociation of casein micelles: size distribution and effect of temperature. Brazilian Journal of Medical and Biological Research 38 12091214CrossRefGoogle ScholarPubMed
Gleissle, W & Baloch, MK 1983 Flow behaviour of concentrated suspensions at high shear stresses and shear rates. In: 8th International Technical Conference on Slurry Transportation, pp. 103109 San Francisco, USAGoogle Scholar
Hinrichs, J 2000 Ultrahochdruckbehandlung von Lebensmitteln mit Schwerpunkt Milch und Milchprodukte – Phänomene, Kinetik und Methodik [Ultra-high pressure treatment of food focussed on milk and milk products – phenomena, kinetics and methodology]. Fortschritts-Berichte VDI Reihe 3 656 Düsseldorf: VDI VerlagGoogle Scholar
Hinrichs, J & Kessler, HG 1997 Fat content of milk and cream and effects on fat globule stability. Journal of Food Science 62 (5) 992995CrossRefGoogle Scholar
Huppertz, T, Fox, PF & Kelly, AL 2004a High pressure treatment of bovine milk: effects on casein micelles and whey proteins. Journal of Dairy Research 71 97106CrossRefGoogle ScholarPubMed
Huppertz, T, Fox, PF & Kelly, AL 2004b Dissociation of caseins in high pressure-treated bovine milk. International Dairy Journal 14 (8) 675680CrossRefGoogle Scholar
Johnston, DE, Austin, BA & Murphy, RJ 1992a Effect of high hydrostatic pressure on milk. Milchwissenschaft 47 (12) 760763Google Scholar
Johnston, DE, Austin, BA & Murphy, RJ 1992b The effect of high hydrostatic pressure on skim milk. High Pressure and Biotechnology 224 243247Google Scholar
Johnston, DE, Rutherford, JA & McCreedy, RW 2002 Ethanol stability and chymosin-induced coagulation behaviour of high pressure treated milk. Milchwissenschaft 57 (7) 363366Google Scholar
Keenan, RD, Young, DJ, Tier, CM, Jones, AD & Underdown, J 2001 Mechanism of Pressure-Induced Gelation of Milk. Journal of Agricultural and Food Chemistry 49 33943402CrossRefGoogle Scholar
Kersten, M 2001 Proteinfraktionierung mittels Membrantrennverfahren [Protein fractionation by means of membrane processes] – Fortschritts-Berichte VDI Reihe 3 709 Düsseldorf: VDI VerlagGoogle Scholar
Law, AJR, Leaver, J, Felipe, X, Ferragut, V, Pla, R & Guamis, B 1998 Comparison of the effects of high pressure and thermal treatments on casein micelles in goat milk. Journal of Agricultural and Food Chemistry 46 25232530CrossRefGoogle Scholar
Lee, SK, Anema, SG, Schrader, K & Buchheim, W 1996 Effect of high hydrostatic pressure on Ca-caseinate systems. Milchwissenschaft 51 (1) 1721Google Scholar
López-Fandiño, R, De la Fuente, MA, Ramos, M & Olano, A 1998 Distribution of minerals and proteins between the soluble and colloidal phases of pressurized milks from different species. Journal of Dairy Research 65 6978CrossRefGoogle Scholar
Masson, P 1992 Pressure denaturation of proteins. In Pressure and biotechnology, pp. 8999 (Eds. Balny, C, Hayashi, R & Heremans, K). Montrouge, France: Libby Eurotext LtdGoogle Scholar
Mozhaev, VV, Heremans, K, Frank, J, Masson, P & Balny, C 1996 High pressure effects on protein structure and function. Proteins: Structure, Function and Genetics 24 81913.0.CO;2-R>CrossRefGoogle ScholarPubMed
Needs, EC, Stenning, RA, Gill, AL, Ferragut, V & Rich, GT 2000 High-pressure treatment of milk: effects on casein micelle structure and on enzymatic coagulation. Journal of Dairy Research 67 3142CrossRefGoogle Scholar
Ohmiya, K, Fukami, K, Shimizu, S & Gekko, K 1989 Effects of pressure on the association states of enzyme-treated casein. Agriculture Biological Chemistry 53 (1) 17Google Scholar
Regnault, S, Thiebaud, M, Dumay, E & Cheftel, JC 2004 Pressurisation of raw skim milk and of a dispersion of phosphocaseinate at 9°C or 20°C: effects on casein micelle size distribution. International Dairy Journal 14 5568CrossRefGoogle Scholar
Richardson, BC, Creamer, LK, Pearce, KN & Munford, RE 1974 Comparative micelle structure. II. Structure and composition of casein micelles in ovine and caprine milk as compared with those in bovine milk. Journal of Dairy Research 41 239247CrossRefGoogle Scholar
Rollema, HS & de Kruif, CG 2003 Caseins, chemical composition and properties. In: Progress in Biotechnology, Vol 23 pp. 220226 (Eds Aalbersberg, WY, Hamer, Rj, Jasperse, P, de Jong, HHJ, de Kruif, CG, Walstra, P & de Wolf, FA). Elsevier Science B.V.Google Scholar
Schmidt, DG & Buchheim, W 1970 Electron microscopic examination of the fine structure of casein micelles in milk. Milchwissenschaft 25 (10) 596599Google Scholar
Schrader, K, Buchheim, W & Morr, CV 1997 High pressure effects on the colloidal calcium phosphate and the structural integrity of micellar casein in milk. Part 1. High pressure dissolution of colloidal calcium phosphate in heated milk systems. Nahrung 41 (3) 133138CrossRefGoogle ScholarPubMed
Schrader, K & Buchheim, W 1998 High pressure effects on the colloidal calcium phosphate and the structural integrity of micellar casein in milk. II. Kinetics of the casein micelle disintegration and protein interactions in milk. Kieler Milchwirtschaftliche Forschungberichte 50 (1) 7988Google Scholar
Shibauchi, Y, Yamamoto, H & Sagara, Y 1992 Conformational change of casein micelles by high pressure treatment. High Pressure and Biotechnology 224 239242Google Scholar
Snoeren, THM, Damman, AJ & Klok, HJ 1982 The viscosity of skim-milk concentrates. Netherlands Milk and Dairy Journal 36 (4) 305316Google Scholar
Suzuki, K & Taniguchi, Y 1972 Effect of pressure on biopolymers and model systems. In Effects of pressure on organisms, pp. 103124 (Eds Sleigh, MA & Mac Donald, AG). Cambridge, UK: Cambridge University PressGoogle Scholar
Velez-Ruiz, JF, Swanson, BG & Barbosa-Canovas, GV 1998 Flow and viscoelastic properties of concentrated milk treated by high hydrostatic pressure. Lebensmittel-Wissenschaft U. Technologie 31 182195CrossRefGoogle Scholar
Walstra, P 1990 On the stability of casein micelles. Journal of Dairy Science 73 19651979CrossRefGoogle Scholar
Windhab, E 1986 Untersuchungen zum rheologischen Verhalten konzentrierter Suspensionen [Studies on the rheological behaviour of concentrated suspensions]. Fortschritts-Berichte VDI Reihe 3 118 Düsseldorf: VDI VerlagGoogle Scholar