Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-27T23:03:41.112Z Has data issue: false hasContentIssue false

On the size of monomers and polymers of β-casein

Published online by Cambridge University Press:  01 June 2009

Wolfgang Buchheim
Affiliation:
Institute for Physics, Federal Dairy Research Centre, D2300 Kiel, Federal Republic of Germany
Daniël G. Schmidt
Affiliation:
Netherlands Institute for Dairy Research, Ede, The Netherlands

Summary

The size and number average molecular weight have been determined for β-casein monomers and polymers from electron micrographs using the freeze-etching procedure with spray-frozen specimens. For the spherical β-casein monomers we found a mol. wt of 22600 and a diam. about 10 nm, which compared quite well with data obtained from ultracentrifugation, light scattering and viscosity measurements. Polymer sizes were in agreement with molecular weight determinations from ultracentrifugation and light scattering, assuming that the volume and weight of the particles are proportional.

Type
Section C. Association of Proteins
Copyright
Copyright © Proprietors of Journal of Dairy Research 1979

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bachmann, L. & Schmitt, W. W. (1971). Proceedings of the National Academy of Sciences of the USA 68, 2149.CrossRefGoogle Scholar
Bachmann, L. & Schmitt-Fumian, W. W. (1973). In Freeze Etching, p. 63. (Eds Benedetti, E. L. and Favard., P.) Paris: Societé Française do Microscopie électronique.Google Scholar
Buchheim, W. (1972). Naturwissenschaften 59, 121.CrossRefGoogle Scholar
Goldsmith, P. L. (1967). British Journal of Applied Physics 18, 813.CrossRefGoogle Scholar
Mercier, J. -C., Grosclaude, F. & Ribadeau Dumas, B. (1971). European Journal of Biochemistry 23, 41.CrossRefGoogle Scholar
Moor, H. (1975). In Methodensammlung der Elektronenmikroskopie. (Eds Schimmel, G. and Vogell., W.) Stuttgart: Wiss. Verlagsgesellschaft.Google Scholar
Noelken, M. & Reibstein, M. (1968). Archives of Biochemistry and Biophysics 123, 397.CrossRefGoogle Scholar
Payens, T. A. J., Brinkhuis, J. & Van Markwijk, B. W. (1969). Biochimica et Biophysica Acta 175, 434.CrossRefGoogle Scholar
Payens, T. A. J. & Heremans, K. (1969). Biopolymers 8, 335.CrossRefGoogle Scholar
Payens, T. A. J. & Van Markwijk, B. W. (1963). Biochimica et Biophysica Acta 71, 517.CrossRefGoogle Scholar
Ribadeau Dumas, B., Brignon, G., Grosclaude, F. & Mercier, J.-C. (1972). European Journal of Biochemistry 25, 505.CrossRefGoogle Scholar
Riehle, U. (1968). Chemie, Ingenieur, Technik 40, 213.CrossRefGoogle Scholar
Schmidt, D. G. (1970). Biochimica et Biophysica Acta 207, 130.CrossRefGoogle Scholar
Schmidt, D. G. & Buchheim, W. (1976). Netherlands Milk and Dairy Journal 30, 17.Google Scholar
Schmidt, D. G. & Payens, T. A. J. (1963). Biochimica et Biophysica Acta 78, 492.CrossRefGoogle Scholar
Schmidt, D. G. & Payens, T. A. J. (1972). Journal of Colloid and Interface Science 39, 655.CrossRefGoogle Scholar
Sullivan, R. A., Fitzpatrick, M. M., Stanton, E. K., Annino, R., Kissel, G. & Palermiti, F. (1955). Archives of Biochemistry and Biophysics 55, 455.CrossRefGoogle Scholar