Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-27T23:53:13.237Z Has data issue: false hasContentIssue false

Uptake of glutamic acid by Streptococcus salivarius subsp. thermophilus CNRZ 302

Published online by Cambridge University Press:  01 June 2009

Patrice Bracquart
Affiliation:
Laboratory of Applied Biochemistry (INRA-associated laboratory), University of Nancy I, BP 239, 54506 Vandoeuvre-les-Nancy Cedex, France
Jean-Yves Le Deaut
Affiliation:
Laboratory of Applied Biochemistry (INRA-associated laboratory), University of Nancy I, BP 239, 54506 Vandoeuvre-les-Nancy Cedex, France
Guy Linden
Affiliation:
Laboratory of Applied Biochemistry (INRA-associated laboratory), University of Nancy I, BP 239, 54506 Vandoeuvre-les-Nancy Cedex, France

Summary

Glutamic acid uptake in Streptococcus salivarius subsp. thermophilus was energy dependent, the source of energy and adaptation to sugar being important to efficiency of uptake. The disaccharides, lactose and sucrose, stimulated uptake, but cells grown in glucose were more active. Optimum temperature was ˜ 40 °C and pH ˜ 7·0. NaCl was strongly inhibitory to the uptake of glutamic acid although not to that of isoleucine. High specificity existed because only L-aspartic acid was inhibitory.

Type
Original Articles
Copyright
Copyright © Proprietors of Journal of Dairy Research 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Akpemado, K. M. & Bracquart, P. A. 1983 Uptake of branched-chain amino acids by Streptococcus thermophilus. Applied and Environmental Microbiology 45 136140CrossRefGoogle ScholarPubMed
Asghar, S. S., Levin, E. & Harold, F. M. 1973 Accumulation of neutral amino acids by Streptococcus faecalis. Energy coupling by a proton-motive force. Journal of Biological Chemistry 248 52255233CrossRefGoogle ScholarPubMed
Benateya, A., Bracquart, P. & Linden, G. 1986 [Permeation of glucides in Streptococcus thermophilns. 1. Characterization of the system of lactose uptake: adaptation to lactose and to glucose.] Microbiologie-Aliments-Nutrition 4 253264Google Scholar
Bracquart, P. 1981 An agar medium for the differential enumeration of Streptococcus thermophilus and Lactobacillus bulgaricus in yoghurt. Journal of Applied Bacteriology 51 303305CrossRefGoogle Scholar
Bracquart, P. & Lorient, D. 1977 [Effect of amino acids on the growth of Streptococcus thermophilus.] Milchwissenschaft 32 221224Google Scholar
Brock, T. D. & Moo-Penn, G. 1962 An amino acid transport system in Streptococcus faecium. Archives of Biochemistry and Biophysics 98 183190CrossRefGoogle ScholarPubMed
Brock, T. D. & Wooley, S. O. 1964 Glycylglycine uptake in streptococci and a possible role of peptides in amino acid transport. Archives of Biochemistry and Biophysics 105 5157CrossRefGoogle Scholar
Cohen, G. N. & Rickenberg, H. V. 1956 [Specific reversible concentration of amino acids in Escherichia coli.] Annales de l'Institut Pasteur, Paris 91 693720Google ScholarPubMed
Farrow, J. A. E. & Collins, M. D. 1984 DNA base composition, DNA-DNA homology and long-chain fatty acid studies on Streptococcus thermophilus and Streptococcus salivarius. Journal of General Microbiology 130 357362Google Scholar
Frank, L. & Hopkins, I. 1969 Sodium-stimulated transport of glutamate in Escherichia coli. Journal of Bacteriology 100 329336CrossRefGoogle ScholarPubMed
Furlong, C. E. & Schellenberg, G. D. 1980 Characterization of membrane proteins involved in transport. In Microorganisms and Nitrogen Sources pp. 89123 (Ed. Payne, J. W.) Chichester: John Wiley & SonsGoogle Scholar
Halpern, Y. S. & Even-Shoshan, A. 1967 Properties of the glutamate transport system in Escherichia coli. Journal of Bacteriology 93 10091016CrossRefGoogle ScholarPubMed
Halpern, Y. S. & Umbarger, H. E. 1961 Utilization of L-glutamic and 2-oxoglutaric acid as sole sources of carbon by Escherichia coli. Journal of General Microbiology 26 175183CrossRefGoogle ScholarPubMed
Law, B. A. 1978 Peptide utilization by group N streptococci. Journal of General Microbiology 105 113118CrossRefGoogle ScholarPubMed
Law, B. A. & Kolstad, J. 1983 Proteolytic systems in lactic acid bacteria. Antonie van Leeuwenhoek 49 225245CrossRefGoogle ScholarPubMed
Marshall, V. M. E. & Law, B. A. 1984 The physiology and growth of dairy lactic-acid bacteria. In Advances in the Microbiology and Biochemistry of Cheese and Fermented Milk pp. 6798 (Eds Davies, F. L. and Law, B. A.) London: Elsevier Applied ScienceGoogle Scholar
McGinnis, J. F. & Paigen, K. 1969 Catabolito inhibition: a general phenomenon in the control of carbohydrate utilization. Journal of Bacteriology 100 902913CrossRefGoogle Scholar
Miner, K. M. & Frank, L. 1974 Sodium-stimulated glutamate transport in osmotically shocked cells and membrane vesicles of Escherichia coli. Journal of Bacteriology 117 10931098CrossRefGoogle ScholarPubMed
Mora, J. & Snell, E. E. 1963 The uptake of amino acids by cells and protoplasts of S. faecalis. Biochemistry 2 136141CrossRefGoogle Scholar
Moran, J. W. 1980 Branched-chain amino acid transport in Streptococcus agalactiae. Applied and Environmental Microbiology 40 2531CrossRefGoogle ScholarPubMed
O'Leary, V. S. & Woychick, J. H. 1976 Utilization of lactose, glucose, and galactose by a mixed culture of Streptococcus thermophilus and Lactobacillus bulgaricus in milk treated with lactase enzyme. Applied and Environmental Microbiology 32 8994CrossRefGoogle ScholarPubMed
Piperno, J. R. & Oxender, D. L. 1968 Amino acid transport systems in Escherichia coli K12. Journal of Biological Chemistry 243 59145920CrossRefGoogle Scholar
Reid, K. G., Utech, N. M. & Holden, J. T. 1970 Multiple transport components for dicarboxylic amino acids in Streptococcus faecalis. Journal of Biological Chemistry 245 52615272CrossRefGoogle ScholarPubMed
Rice, G. H., Stewart, F. H. C., Hillier, A. J. & JAGO, G. R. 1978 The uptake of amino acids and peptides by Streptococcus lactis. Journal of Dairy Research 45 93107CrossRefGoogle Scholar
Schellenberg, G. D. & Furlong, C. E. 1977 Resolution of the multiplicity of the glutamate and aspartate transport system of Escherichia coli. Journal of Biological Chemistry 252 90559064CrossRefGoogle ScholarPubMed
Seitz, E. W. & Hochster, R. M. 1965 Active transport of L-valine by Streptococcus diacetilactis. Journal of Dairy Science 48 12821286CrossRefGoogle ScholarPubMed
Shankar, P. A. & Davies, F. L. 1978 Interrelationships of Streptococcus thermophilus and Lactobacillus bulgaricus in yoghurt starters. 20th International Dairy Congress, Paris E 514515Google Scholar
Tinson, W., Hillier, A. J. & Jago, G. R. 1982 Metabolism of Streptococcus thermophilus. I. Utilization of lactose, glucose and galactose. Australian Journal of Dairy Technology 37 813Google Scholar