Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-27T12:51:21.031Z Has data issue: false hasContentIssue false

Assessment of mammary gland metabolism in the sow: I. Development of methods for the measurement of cellular metabolites in milk and colostrum

Published online by Cambridge University Press:  01 June 2009

Craig S. Atwood
Affiliation:
Department of Biochemistry, The University of Western Australia, Nedlands WA 6009, Australia
Peter E. Hartmann
Affiliation:
Department of Biochemistry, The University of Western Australia, Nedlands WA 6009, Australia

Summary

We have modified deproteinization methods and a number of spectrophotometric and bioluminescent methods in order to measure the concentrations of cellular metabolites in small volumes (< 0·3 ml) of sows' colostrum and milk. For the majority of the assays, recoveries ranged from 92 to 105%. The binding of ATP and UTP to a calcium phosphate–citrate–caseinate complex in milk, and the decrease in ATP (92%/h) and UTP (18·1 %/h) concentrations during in vitro incubation of the whey fraction suggested that it was unlikely ATP and UTP (both < 1 µM) could exist free in sows' milk. The mean concentrations (range) of cellular metabolites in milk (6–11 d post partum) were: glucose, 669 µM (220–1367); glucose 6-phosphate, 63·0 µM (27·6–101·4); glucose 1-phosphate, 18·3 µM (13·1–24·8); UDPglucose, 296 µM (170–494); UDPgalactose, 635 µM (230–945); lactose, 162 mM (124–187); UDP, 105 µM (85–130); UMP, 1760 µM (1326–2587); inorganic phosphate, 135 mM (1·4–29·3); ATP, <0·5 µM; ADP, 53·6 µM (10·5–171·25); AMP, 215 µM (61·6–491·6); cAMP, 22·3 µM (3·5–61·6); galactose, 198 µM (118–474) and fructose, 226 µM (172–283). Differences in the concentrations of glucose, glucose 6-phosphate, glucose 1-phosphate, UDPgalactose and cAMP between fore and hind milk samples indicated postsecretory changes in the concentrations of certain metabolites. Changes in the concentrations of metabolites during in vitro incubation of milk and of colostrum suggested that these postsecretory changes were probably due to the actions of enzymes present in mammary secretion. Collection of milk that has been most recently secreted (hind milk) will provide the most accurate indication of the intracellular concentrations of these metabolites. The concentrations of cellular metabolites in the milks from different species are compared.

Type
Original Articles
Copyright
Copyright © Proprietors of Journal of Dairy Research 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Andrews, A. T., Anderson, M. & Goodenough, P. W. 1987 A study of the heat stabilities of a number of indigenous milk enzymes. Journal of Dairy Research 54 237246CrossRefGoogle Scholar
Arthur, P. G. 1988 Novel Methods for Investigating Milk Synthesis in Lactating Mothers. PhD thesis, The University of Western AustraliaGoogle Scholar
Arthur, P. G., Kent, J. C. & Hartmann, P. E. 1989 b Microanalysis of the metabolic intermediates of lactose synthesis in human milk and plasma using bioluminescent methods. Analytical Biochemistry 176 449456CrossRefGoogle ScholarPubMed
Arthur, P. G., Kent, J. C. & Hartmann, P. E. 1991 Metabolites of lactose synthesis in milk from women during established lactation. Journal of Pediatric Gastroenterology and Nutrition 13 260266Google ScholarPubMed
Arthur, P. G., Smith, M. & Hartmann, P. E. 1989 a Milk lactose, citrate, and glucose as markers of lactogenesis in normal and diabetic women. Journal of Pediatric Gastroenterology and Nutrition 9 488496Google ScholarPubMed
Atwood, C. S. & Hartmann, P. E. 1992 Collection of fore and hind milk from the sow and the changes in milk composition during suckling. Journal of Dairy Research 59 287298CrossRefGoogle ScholarPubMed
Atwood, C. S., Toussaint, J. K. & Hartmann, P. E. 1995 Assessment of mammary gland metabolism in the sow. II. Cellular metabolites in the mammary secretion and plasma during lactogenesis II. Journal of Dairy Research 62 207220CrossRefGoogle Scholar
Bencini, R., Hartmann, P. E. & Lightfoot, J. 1992 Comparative dairy potential of Merino and Awassi x Merino ewes. Proceedings of the Australian Association of Animal Breeding and Genetics 10 114117Google Scholar
Beutler, H.-O. 1984 D-fructose. In Methods of Enzymatic Analysis, 3rd edn, vol. 6, pp. 321327 (Eds Bergmeyer, H. U., Bergmeyer, J. and GraBl, M.). Weinheim: Verlag ChemieGoogle Scholar
Blatohford, D. R., Faulkner, A., Henderson, A. J., Peaker, M. & White, J. M. 1984 Cyclic nucleotides in goats' milk: changes with physiological state. Comparative Biochemistry and Physiology 78C 203206Google Scholar
Bowland, J. P. 1966 Swine milk composition – a summary. In Swine in Biomedical Research, pp. 97107 (Eds Bustad, L. K., McClellan, R. O. and Burns, M. P.). Richland, WA: Pacific Northwest LaboratoryGoogle Scholar
Brooker, B. E. 1980 The epithelial cells and cell fragments in human milk. Cell and Tissue Research 210 321332CrossRefGoogle ScholarPubMed
Chaiyabutr, N., Faulkner, A. & Peaker, M. 1981 Changes in the concentrations of the minor constituents of goat's milk during starvation and on refeeding of the lactating animal and their relationship to mammary gland metabolism. British Journal of Nutrition 45 149157CrossRefGoogle ScholarPubMed
Comber, M. F. & Hartmann, P. E. 1993 Preliminary examination of sows' milk by nuclear magnetic resonance. In Manipulating Pig Production IV, p. 263 (Ed. Batterham, E. S.). Canberra: Australasian Pig Sciences AssociationGoogle Scholar
Deutsch, A. & Mattsson, S. 1960 Acid-soluble nucleotides in cows' milk and colostrum. Report on Milk and Dairy Research, Alnarp, Sweden no. 63Google Scholar
Faulkner, A. 1980 The presence of cellular metabolites in milk. Biochimica et Biophysica Acta 630 141145CrossRefGoogle ScholarPubMed
Faulkner, A., Blatohford, D. R. & Pollock, H. T. 1985 a The transport of hexoses across the apical membrane of the mammary gland of the goat. Biochemical Society Transactions 13 689690CrossRefGoogle Scholar
Faulkner, A., Blatohford, D. R., White, J. M. & Peaker, M. 1982 Changes in the concentrations of metabolites in milk at the onset and cessation of lactation in the goat. Journal of Dairy Research 49 399405CrossRefGoogle ScholarPubMed
Faulkner, A., Brechany, E. Y., Mabon, R. M. & Pollock, H. T. 1986 Seasonal changes in the fat composition and concentration of citrate and related metabolites in cows' milk. Journal of Dairy Research 53 223227CrossRefGoogle Scholar
Faulkner, A., Chaiyabutr, N., Peaker, M., Carrick, D. T. & Kuhn, N. J. 1981 Metabolic significance of milk glucose. Journal of Dairy Research 48 5156CrossRefGoogle ScholarPubMed
Faulkner, A., Henderson, A. J. & Blatohford, D. R. 1985 b The transport of metabolites into goat's milk. Biochemical Society Transactions 13 495496CrossRefGoogle Scholar
Faulkner, A., Henderson, A. J. & Peaker, M. 1984 The effects of colchicine and vincristine on the concentrations of glucose and related metabolites in goat's milk. Biochimica et Biophysica Acta 802 335339CrossRefGoogle ScholarPubMed
Faulkner, A. & Pollock, H. T. 1988 The effects of concanavalin A on milk secretion and mammary metabolism in the goat. Biochimica et Biophysica Acta 967 284288CrossRefGoogle ScholarPubMed
Faulkner, A. & Pollock, H. T. 1989 Changes in the concentration of metabolites in milk from cows fed on diets supplemented with soyabean oil or fatty acids. Journal of Dairy Research 56 179183CrossRefGoogle ScholarPubMed
Gawehn, K. 1985 Inorganic phosphate. In Methods of Enzymatic Analysis, 3rd edn, vol. 7, pp. 552558 (Eds Bergmeyer, H. U., Bergmeyer, J. and Graβl, M.). Weinheim: Verlag ChemieGoogle Scholar
George, D. E. & DeFrancesca, B. A. 1989 Human milk in comparison to cow milk. In Textbook of Gastroenterology and Nutrition in Infancy, 2nd edn, pp. 239261 (Ed. Lebenthal, E.). New York: Raven Press.Google Scholar
Giesecke, W. H., Durand, A. M. & Petzer, I.-M. 1984 Fluctuations in the glucose level of cow's milk from normal and subclinically diseased udders. Onderstepoort Journal of Veterinary Research 51 1519Google ScholarPubMed
Gil, A. 1984 Nucleotidos en la Leche Humana Fundamento para su Empleo en Leches Infantiles. [Nucleotides in human milk are fundamental for infants.] Granada: Europa de Dieteticios y AlimentacionGoogle Scholar
Gil, A. & Sanchez Medina, F. 1981 The acid-soluble nucleotides of cow's, goat's and sheep's milks, at different stages of lactation. Journal of Dairy Research 48 3544CrossRefGoogle ScholarPubMed
Gil, A. & Sanchez Medina, F. 1982 Acid-soluble nucleotides of human milk at different stages of lactation. Journal of Dairy Research 49 301307CrossRefGoogle ScholarPubMed
Grigor, M. R., Carrinoton, J. M., Arthur, P. G. & Hartmann, P. E. 1989 Lack of correlation between milk glucose concentrations and rates of milk production in the rat. Journal of Dairy Research 56 3743CrossRefGoogle ScholarPubMed
Grigor, M. R. & Hartmann, P. E. 1985 NADP-linked dehydrogenases in secreted milk. Journal of Dairy Research 52 501506CrossRefGoogle ScholarPubMed
Hamosh, M. 1989 Enzymes in human milk: their role in nutrient digestion, gastrointestinal function and nutrient delivery to the newborn infant. In Textbook of Gastroenterology and Nutrition in Infancy, 2nd edn, pp. 121134 (Ed. Lebenthal, E.). New York: Raven PressGoogle Scholar
Hampp, R. 1985 Adenosine 5′-diphosphate and adenosine 5′-monophosphate: luminometric method. In Methods of Enzymatic Analysis, 3rd edn, vol. 7, pp. 370379 (Eds Bergmeyer, H. U., Bergmeyer, J. and Graβl, M.). Weinheim: Verlag ChemieGoogle Scholar
Henderson, A. J. & Faulkner, A. 1985 The effects of vincristine on milk secretion and milk composition in the goat. Quarterly Journal of Experimental Physiology 70 1522CrossRefGoogle ScholarPubMed
Hernell, O., Blackberg, L. & Lindberg, T. 1989 Human milk enzymes with emphasis on the lipases. In Textbook of Gastroenterology and Nutrition in Infancy, 2nd edn, pp. 209217 (Ed. Lebenthal, E.). New York: Raven PressGoogle Scholar
Ho, F. C. S., Wong, R. L. C. & Lawton, J. W. M. 1979 Human colostral and breast milk cells. A light and electron microscopic study. Acta Paediatrica Scandinavica 68 389396CrossRefGoogle Scholar
Hoff, J. E. & Wick, E. L. 1963 Acid-soluble phosphates in cow milk. Journal of Food Science 28 510518CrossRefGoogle Scholar
Holmes, M. A. & Hartmann, P. E. 1993 Concentration of citrate in the mammary secretion of sows during lactogenesis II and established lactation. Journal of Dairy Research 60 319326CrossRefGoogle ScholarPubMed
Janas, L. M. & Picciano, M. F. 1982 The nucleotide profile of human milk. Pediatric Research 16 659662CrossRefGoogle ScholarPubMed
Janssen, M. M. T. & Walstra, P. 1982 Cytoplasmic remnants in milk of certain species. Netherlands Milk and Dairy Journal 36 365368Google Scholar
Jensen, D. L. & Eberhart, R. J. 1975 Macrophages in bovine milk. American Journal of Veterinary Research 36 619624Google ScholarPubMed
Johke, T. 1963 Acid-soluble nucleotides of colostrum, milk, and mammary gland. Journal of Biochemistry 54 388397CrossRefGoogle ScholarPubMed
Keesey, J. 1987 Lactate dehydrogenase. In BiochemicaInformation, pp. 4648 (Ed. Keesey, J.). Indianapolis, IA: Boehringer Mannheim BiochemicalsGoogle Scholar
Keppler, D. & Decker, K. 1985 Uridine 5′-diphosphoglucose and uridine 5′-diphosphogalactose. In Methods of Enzymatic Analysis, 3rd edn, vol. 7, pp. 524530 (Eds Bergmeyer, H. U., Bergmeyer, J. and Graβl, M.). Weinheim: Verlag ChemieGoogle Scholar
Keppler, D., Gawehn, K. & Decker, K. H. O. 1985 Uridine 5′-triphosphate, uridine 5′-diphosphate and uridine 5′-monophosphate. In Methods of Enzymatic Analysis, 3rd edn, vol. 7, pp. 439448 (Eds Bergmeyer, H. U., Bergmeyer, J. and Graβl, M.). Weinheim: Verlag ChemieGoogle Scholar
Kitchen, B. J. 1985 Indigenous milk enzymes. In Developments in Dairy Chemistry—3. Lactose and Minor Constituents, pp. 239279 (Ed. Fox, P. F.). Elsevier Applied ScienceCrossRefGoogle Scholar
Klobasa, F., Werhahn, E. & Butler, J. E. 1987 Composition of sow milk during lactation. Journal of Animal Science 64 14581466CrossRefGoogle ScholarPubMed
Kobata, A., Kida, M. & Zirô, S. 1961 Occurrence of 3′, 5′-cyclic AMP in milk. Journal of Biochemistry 50 275276CrossRefGoogle Scholar
Kobata, A. & Zirô, S. 1965 The acid-soluble nucleotides of milk. III. Occurrence of UDP-N-acetyllactosamine and UDP-D-xylose in pig's milk and colostrum. Biochimica et Biophysica Acta 107 405413CrossRefGoogle Scholar
Kobata, A., Zirô, S. & Kida, M. 1962 The acid-soluble nucleotides of milk. I. Quantitative and qualitative differences of nucleotide constituents in human and cow's milk. Journal of Biochemistry 51 277287CrossRefGoogle Scholar
Kuhn, N. J. & White, A. 1975 Milk glucose as an index of the intracellular glucose concentration of rat mammary gland. Biochemical Journal 152 153155CrossRefGoogle ScholarPubMed
Kuhn, N. J., White, M. D. & Threadgold, L. C. 1982 Carriers and pores in mammary membranes. Biochemical Society Transactions 10 1516CrossRefGoogle ScholarPubMed
Kulski, J. K. & Buehring, G. C. 1982 Microanalysis of lactose in tissue culture medium using an enzymatic–fluorometric method. Analytical Biochemistry 119 341350CrossRefGoogle ScholarPubMed
Kunst, A., Draeger, B. & Ziegenhorn, J. 1984 D-glucose: uv-methods with hexokinase and glucose-6- phosphate dehydrogenase. In Methods of Enzymatic Analysis, vol. 6, pp. 163172 (Eds Bergmeyer, H. U., Bergmeyer, J. and Graβl, M.). Weinheim: Verlag ChemieGoogle Scholar
Lee, C. S., McCauley, I. & Hartmann, P. E. 1983 Light and electron microscopy of cells in pig colostrum, milk and involution secretion. Acta Anatomica 116 126135CrossRefGoogle ScholarPubMed
Lee, C. S. & Outteridge, P. M. 1981 Leucocytes of sheep colostrum, milk and involution secretion, with particular reference to ultrastrueture and lymphocyte sub-populations. Journal of Dairy Research 48 225237CrossRefGoogle ScholarPubMed
Lee, C. S., Wooding, F. B. P. & Kemp, P. 1980 Identification, properties, and differential counts of cell populations using electron microscopy of dry cows secretions, colostrum and milk from normal cows. Journal of Dairy Research 47 3950CrossRefGoogle ScholarPubMed
Linzell, J. L., Mepham, T. B. & Peaker, M. 1976 The secretion of citrate into milk. Journal of Physiology 260 739750CrossRefGoogle ScholarPubMed
Linzell, J. L. & Peaker, M. 1971 Mechanism of milk secretion. Physiological Reviews 51 564597CrossRefGoogle ScholarPubMed
Lück, H. & Botha, W. C. 1982 Glucose content of milk as influenced by the stage of lactation, milk yield, energy intake and somatic cell count. South African Journal of Dairy Technology 14, 111114Google Scholar
McGann, T. C. A. & Pyne, G. T. 1960 The colloidal phosphate of milk. III. Nature of its association with casein. Journal of Dairy Research 27 403417CrossRefGoogle Scholar
Mackie, R. I., Giesecke, W. H., Lück, H. & De Villiers, P. A. 1977 The concentration of lactate in relation to other components of bovine mammary secretion during premature regression and after resumption of milking. Journal of Dairy Research 44 201211CrossRefGoogle ScholarPubMed
Madon, R. J., Martin, S., Davies, A., Fawcett, H. A. C., Flint, D. J. & Baldwin, S. A. 1990 Identification and characterization of glucose transport proteins in plasma membrane- and Golgi vesicle-enriched fractions prepared from lactating rat mammary gland. Biochemical Journal 272 99105CrossRefGoogle ScholarPubMed
Magnusson, U., Rodriguez-Martinez, H. & Einarsson, S. 1991 A simple, rapid method for differential cell counts in porcine mammary secretions. Veterinary Record 129 485490CrossRefGoogle ScholarPubMed
Michal, G. 1984 D-Gluoose 1-phosphate. In Methods of Enzymatic Analysis, 3rd edn, vol. 6, pp. 185191 (Eds Bergmeyer, H. U., Bergmeyer, J. and Graβl, M.). Weinheim: Verlag ChemieGoogle Scholar
Neville, M. C., Allen, J. C., Archer, P. C., Casey, C. E., Seacat, J., Keller, R. P., Lutes, V., Rasbach, J. & Neifert, M. 1991 Studies in human lactation: milk volume and nutrient composition during weaning and lactogenesis. American Journal of Clinical Nutrition 54 8192CrossRefGoogle ScholarPubMed
Neville, M. C., Hay, W. W. & Fennessey, P. 1990 Physiological significance of the concentration of human milk glucose. Protoplasma 159 118128CrossRefGoogle Scholar
Neville, M. C., Keller, R. P., Seacat, J., Casey, C. E., Allen, J. C. & Archer, P. 1984 Studies on human lactation. 1. Within-feed and between-breast variation in selected components of human milk. American Journal of Clinical Nutrition 40 635646CrossRefGoogle Scholar
Neville, M. C. & Peaker, M. 1979 The secretion of calcium and phosphorus into milk. Journal of Physiology 290 5967CrossRefGoogle ScholarPubMed
Nicholas, K. R. & Hartmann, P. E. 1991 Milk secretion in the rat: progressive changes in milk composition during lactation and weaning and the effect of diet. Comparative Biochemistry and Physiology 98A 535542CrossRefGoogle Scholar
Noblet, J. & Etienne, M. 1986 Effect of energy level in lactating sows on yield and composition of milk and nutrient balance of piglets. Journal of Animal Science 63 18881896CrossRefGoogle ScholarPubMed
Oftedal, O. T. 1984 Milk composition, milk yield and energy output at peak lactation: a comparative review. In Physiological Strategies in Lactation, pp. 3385 (Eds Peaker, M., Vernon, R. G. and Knight, C. H.). London: Academic Press (Symposia of the Zoological Society of London no. 51)Google Scholar
Okada, M. 1960 Histology of the mammary gland. VII. Histological and histoehemical studies of cells in the milk of domestic animals. Tohoku Journal of Agricultural Research 11 3151Google Scholar
Reineccius, G. A., Kavanagh, T. E. & Keeney, P. G. 1970 Identification and quantitation of free neutral carbohydrates in milk products by gas-liquid chromatography and mass spectrometry. Journal of Dairy Science 53 10181022CrossRefGoogle ScholarPubMed
Richardson, T., McGann, T. C. A. & Kearney, R. D. 1980 Levels and location of adenosine 5′-triphosphate in bovine milk. Journal of Dairy Research 47 9196CrossRefGoogle ScholarPubMed
Skala, J. P., Koldovsky, O. & Hahn, P. 1981 Cyclic nucleotides in breast milk. American Journal of Clinical Nutrition 34 343350CrossRefGoogle ScholarPubMed
Threadgold, L. C. & Kuhn, N. J. 1984 Monosaccharide transport in the mammary gland of the intact lactating rat. Biochemical Journal 218 213219CrossRefGoogle ScholarPubMed
Turner, G. A. & Mazlan, M. 1985 Adenosine 3′:5′-monophosphate, cyclic: luminometric method. In Methods of Enzymatic Analysis, 3rd edn, vol. 7, pp. 389396 (Eds Bergmeyer, H. U., Bergmeyer, J. and Graβl, M.). Weinheim: Verlag ChemieGoogle Scholar
Uauy, R. 1989 Dietary nucleotides and requirements in early life. In Textbook of Gastroenterology andNutrition in Infancy, 2nd edn, pp. 265280 (Ed. Lebenthal, E.). New York: Raven PressGoogle Scholar
Verbeke, R., Massart-Leën, A.-M. & Peeters, G. 1969 Metabolism of [U-14C]D-fructose by the isolated perfused udder. Journal of Dairy Research 36 233239CrossRefGoogle Scholar
Wahlgren, M., Drakenberg, T., Vogel, H. J. & Dejmek, P. 1986 31P-nuclear magnetic resonance study of milk fractions. Journal of Dairy Research 53 539545CrossRefGoogle Scholar
White, M. D., Kuhn, N. J. & Ward, S. 1980 Permeability of lactating-rat mammary gland Golgi membranes to monosaccharides. Biochemical Journal 190 621624CrossRefGoogle ScholarPubMed
White, M. D., Ward, S. & Kuhn, N. J. 1981 Composition, stability and electrolyte permeability of Golgi membranes from lactating-rat mammary gland. Biochemical Journal 200 663669CrossRefGoogle ScholarPubMed
Wilde, C. J. & Kuhn, N. J. 1981 Lactose synthesis and the utilisation of glucose by rat mammary acini. International Journal of Biochemistry 13 311316CrossRefGoogle ScholarPubMed
Wooding, F. B. P. 1971 Discussion on the mechanism of milk secretion, as seen by electron microscopy of milk. In Lactation, p. 71 (Ed. Falconer, I. R.). London: ButterworthsGoogle Scholar
Zulak, I. M., Patton, S. & Hammerstedt, R. H. 1976 Adenosine triphosphate in milk. Journal of Dairy Science 59 13881391CrossRefGoogle ScholarPubMed