Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-13T14:34:05.345Z Has data issue: false hasContentIssue false

Carotenoid and tocopherol levels in the serum of apparently healthy dairy cattle

Published online by Cambridge University Press:  01 June 2009

R. F. Bayfield
Affiliation:
New South Wales Department of Agriculture, Veterinary Research Station, Glenfield, New South Wales, 2167, Australia
P. J. Mylrea
Affiliation:
New South Wales Department of Agriculture, Veterinary Research Station, Glenfield, New South Wales, 2167, Australia

Abstract

Total carotenoids, β-carotene and α-tocopherol concentrations were determined in serum from healthy dairy cattle of various ages, grazing good quality pasture, in different areas of New South Wales. The relationships of these components with each other and with age of the animal were examined.

Mean serum β-carotene concentrations for heifers and cows were 0·68 and 1·20mg/100ml, respectively. These concentrations were somewhat higher than those found for calves (0·20mg/100ml) and weaners (0·37 mg/100 ml). Total corresponding carotenoid values were generally about 20% higher than those for β-carotene for herds.

Mean serum α-tocopherol concentrations for heifers and cows were 0·54 and 0·90 mg/100ml, respectively. Again, these values were higher than those found for calves (0·22 mg/100 ml) and weaners (0·37 mg/100 ml).

There was a close relationship between serum α-tocopherol and β-carotene (r=0·90), between serum α-tocopherol and total carotenoids (r=0·92), and between serum β-carotene and total carotenoids (r= 0·99).

Type
Original Articles
Copyright
Copyright © Proprietors of Journal of Dairy Research 1969

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bayfield, R. F., Falk, R. H. & Barrett, J. D. (1968). J. Chromat. 36, 54.CrossRefGoogle Scholar
Blaxter, K. L. (1953). Nature, Lond. 172, 1006.Google Scholar
Blaxter, K. L. & Brown, F. (1952). Nutr. Abstr. Rev. 22, 1.Google Scholar
Blaxter, K. L., Brown, F. & Macdonald, A. M. (1953). Br. J. Nutr. 7, 105.CrossRefGoogle Scholar
Church, D. C, Macvicar, R., Bieri, J. G., Baker, F. H. & Pope, L. S. (1954). J. Anim. Sci. 13, 676.CrossRefGoogle Scholar
Gillam, A. E. & El ridi, M. S. (1935). Biochem. J. 29, 2465.CrossRefGoogle Scholar
Green, J. (1962). Vitams. Horm. 20, 485.CrossRefGoogle Scholar
Hartley, W. J. & Dodd, D. C. (1957). N.Z. vet. J. 5, 61.CrossRefGoogle Scholar
Hartmann, P. E. & Lascelles, A. K. (1965). Aust. J. biol. Sci. 18, 114.CrossRefGoogle Scholar
Latschar, C. E., Wise, G. H., Parrish, D. B. & Hughes, J. S. (1949). J. Nutr. 38, 503.CrossRefGoogle Scholar
Leitner, Z. A., Moore, T. & Sharman, I. M. (1960a). Br. J. Nutr. 14, 157.CrossRefGoogle Scholar
Leitner, Z. A., Moore, T. & Sharman, I. M. (1960b). Br. J. Nutr. 14, 281.CrossRefGoogle Scholar
Leitner, Z. A., Moore, T. & Sharman, I. M. (1964). Br. J. Nutr. 18, 115.Google Scholar
Moore, T. (1965). Proc. Nutr. Soc. 24, 129.CrossRefGoogle Scholar
Payne, M. G. & Kingman, H. E. (1947). J. Anim. Sci. 6, 50.Google Scholar
Ralston, A. T. & Dyer, I. A. (1959). J. Anim. Sci. 18, 874.CrossRefGoogle Scholar
Repp, W. W. & Watkins, W. E. (1958). J. Anim. Sci. 17, 398.Google Scholar
Roels, O. A. (1967). Nutr. Rev. 25, 33.Google Scholar
Rousseau, J. E. JR., Dicks, M. W., Teichman, R., Helmboldt, C. F., Bacon, E. L., Prouty, R. M., Dolge, K. L., Eaton, H. D., Jungherr, E. L. & Beall, G. (1957). J. Anim. Sci. 16, 612.Google Scholar
Watkins, W. E. & Knox, J. H. (1954). J. Anim. Sci. 13, 490.Google Scholar