Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-27T11:36:39.188Z Has data issue: false hasContentIssue false

Characteristics of proteinases of 3 strains of Staphylococcus lactis isolated from Cheddar cheese*

Published online by Cambridge University Press:  01 June 2009

I. J. McDonald
Affiliation:
Division of Applied Biology, National Research Council, Ottawa, Canada

Summary

Proteinase systems of 3 strains of Staphylococcus lactis from Cheddar cheese have been studied. Proteinase of one organism was found in the culture supernatant, those of the other two were obtained in significant amounts only by disruption of the cells of the organisms. All 3 proteinases possessed maximum activity at alkaline pH (about 9·0–10·0). They were most active at relatively high temperatures (45–55 °C) and possessed temperature characteristics (μ) of 7000–8000 cals. Casein, ²-lactoglobulin and haemoglobin were hydrolysed by the proteinases; casein most readily and β-lactoglobulin more readily than haemoglobin. Because of their characteristics, such proteinases are considered potentially capable of contributing to the ripening of Cheddar cheese.

Type
Original Articles
Copyright
Copyright © Proprietors of Journal of Dairy Research 1964

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abd-el-Malek, Y. & Gibson, T. (1948). J. Dairy Res. 15, 249.CrossRefGoogle Scholar
Alford, J. A. & Frazier, W. C. (1950 a). J. Dairy Sci. 33, 107.CrossRefGoogle Scholar
Alford, J. A. & Frazier, W. C. (1950 b). J. Dairy Sci. 33, 115.CrossRefGoogle Scholar
Anson, M. L. (1938). J. gen. Physiol. 22, 79.CrossRefGoogle Scholar
Baird-Parker, A. C. (1963). J. gen. Microbiol. 30, 409.CrossRefGoogle Scholar
Baribo, L. E. & Foster, E. M. (1952). J. Dairy Sci. 35, 149.CrossRefGoogle Scholar
Brandsaeter, E. & Nelson, F. E. (1956). J. Bact. 72, 68.CrossRefGoogle Scholar
Feagan, J. T. & Dawson, D. J. (1959). Aust. J. Dairy Tech. 0406 59.Google Scholar
Folin, O. & ciocalteu, V. (1927). J. biol. Chem. 73, 627.CrossRefGoogle Scholar
Franklin, J. G. & Sharpe, M. E. (1963). J. Dairy Res. 30, 87.CrossRefGoogle Scholar
Harris, W. C. & Hammer, B. W. (1940). J. Dairy Sci. 23, 701.CrossRefGoogle Scholar
Kristoffersen, T. & Gould, I. A. (1960). J. Dairy Sci. 43, 1202.CrossRefGoogle Scholar
Mulder, H. (1952). Ned. melk-en Zuiveltijdschr. 6, 157.Google Scholar
Pollock, M. R. (1962). The Bacteria, vol. 4 (eds. Gunsalus, I. C & Stanier, R. Y.). N.Y. & London: Academic Press.Google Scholar
Robertson, P. S. (1960). J. Dairy Res. 27, 1.CrossRefGoogle Scholar
Robertson, P. S. & Perry, K. D. (1961). J. Dairy Res. 28, 245.CrossRefGoogle Scholar
Shaw, C., Stitt, J. M. & Cowan, S. T. (1951). J. gen. Microbiol. 5, 1010.CrossRefGoogle Scholar
Stadhouders, J. (1960). Ned. melk-en Zuiveltijdschr. 14, 83.Google Scholar
Vanderzant, W. C. & Nelson, F. E. (1953). J. Dairy Sci. 36, 1212.CrossRefGoogle Scholar