Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-26T19:39:20.546Z Has data issue: false hasContentIssue false

Characteristics of the autolysis of variants of Lactococcus lactis subsp. cremoris

Published online by Cambridge University Press:  01 June 2009

Kaarina Niskasaari
Affiliation:
Department of Biochemistry, University of Oulu, Linnanmaa, SF-90570 Oulu 57, Finland

Summary

Two slime-forming strains (T5 and MLS96) and a non-slime-forming strain (HA) of Lactococcus lactis subsp. cremoris were investigated for autolysis and optimal conditions for the autolytic process were developed. The rate of autolysis was maximal in exponential phase cells in 0·01 M-Na phosphate buffer, pH 6·5–7·5, at 30–45 °C. Autolysis of the native exponential phase walls was activated by trypsin and inhibited by lipoteichoic acid and cardiolipin. Decreased trypsin activation was found in intact exponential phase cells and no activation in stationary phase cells. N-acetylmuramylhydrolase action in the autolytic system of Lc. lactis subsp. cremoris strains was indicated by the progressive release of reducing groups. No amidase or endopeptidase action was found. Great variation in the rate of autolysis of whole cells was observed between the two slime-forming strains. Intact cells of strain T5 exhibited decreased autolytic activity, but a higher rate of autolysis of isolated exponential phase walls. Autolysins from strain T5 walls exhibited lower hydrolytic activity against sodium dodecyl sulphate-treated walls of the other two strains as compared with strains MLS96 and HA. Quantitative analysis revealed higher protein and phosphorus and lower hexosamine and rhamnose in cell wall preparations of strain T5 compared with the other two strains. Results suggest that the decreased rate of autolysis of strain T5 cells may at least in part be caused by cell surface components other than cell-wall peptidoglycan. It is proposed that the difference in autolytic characteristics should be used as a criterion when selecting starter strains of lactococci (streptococci).

Type
Original Articles
Copyright
Copyright © Proprietors of Journal of Dairy Research 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Brown, W. C., Wilson, C. R., Lukehart, S., Young, F. E. & Shiflett, M. A. 1976 Analysis of autolysins in temperature-sensitive morphological mutants of Bacillus subtilis. Journal of Bacteriology 125 166173CrossRefGoogle ScholarPubMed
Carson, D. D. & Daneo-Moore, L. 1980 Effects of fatty acids on lysis of Streptococcus faecalis. Journal of Bacteriology 141 11221126Google Scholar
Chatterjee, A.N., Wong, W., Young, F. E. & Gilpin, R. W. 1976 Isolation and characterization of a mutant of Staphylococcus aureus deficient in autolytic activity. Journal of Bacteriology 125 961967CrossRefGoogle ScholarPubMed
Cleveland, R. F., Daneo-Moore, L., Wicken, A. J. & Shockman, G. D. 1976 Effect of lipoteichoic acid and lipids on lysis of intact cells of Streptococcus faecalis. Journal of Bacteriology 127 15821584CrossRefGoogle ScholarPubMed
Cleveland, R. F., Holtje, J.-V., Wicken, A. J., Tomasz, A., Daneo-Moore, L. & Shockman, G. D. 1975 Inhibition of bacterial wall lysins by lipoteiclioic acids and related compounds. Biochemical and Biophysical Research Communications 67 11281135CrossRefGoogle ScholarPubMed
Cornett, J. B., Redman, B. E. & Shockman, G. D. 1978 Autolytic defective mutant of Streptococcus faecalis. Journal of Bacteriology 133 631640CrossRefGoogle ScholarPubMed
Dische, Z. & Shuttles, L. B. 1951 A new spectrophotometric test for the detection of methylpentose. Journal of Biological Chemistry 192 579582Google Scholar
Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A. & Smith, F. 1956 Colorimetric method for determination of sugars and related substances. Analytical Chemistry 28 350356CrossRefGoogle Scholar
Fischer, W., Koch, U. & Haas, R. 1983 Improved preparation of lipoteichoic acids. European Journal of Biochemistry 133 523530CrossRefGoogle ScholarPubMed
Forsén, R. & Häivä, V.-M. 1981 Induction of stable slime-forming and mucoid states by p-fluoro-pbenylalanine in lactic streptococci. FEMS Microbiology Letters 12 409413Google Scholar
Forsén, R., Hentunen, T., Valkonen, K. & Kontusaari, S. 1986 Cell wall associations of some antigenic proteins of slime-forming, encapsulated Streptococcus cremoris from the fermented milk product ‘viili’. Canadian Journal of Microbiology 32 176178Google Scholar
Forsén, R., Niskasaari, K. & Niemitalo, S. 1985 Immunochemical demonstration of lipoteichoic acid as a surface-exposed plasma membrane antigen of slime-forming, encapsulated Streptococcus cremoris from the fermented milk product ‘viili’. FEMS Microbiology Letters 26 249253CrossRefGoogle Scholar
Forsén, R., Raunio, V. & Myllymaa, R. 1973 Studies on slime-forming group N streptococcus strains. I.Differentiation between some lactic streptococcus strains by polyacrylamide gel electrophoresis of soluble cell proteins. Acta Universitas Ouluensis A 12. Biochemistry 3 119Google Scholar
Ghuysen, J.-M., Tipper, D. J. & Strominger, J. L. 1966 Enzymes that degrade bacterial cell walls. Methods in Enzymology 8 685699CrossRefGoogle Scholar
Herbert, D., Phipps, P. J. & Strange, R. E. 1971 Chemical analysis of microbial cells. In Methods in Microbiology, vol. 5B pp. 209344. (Eds Norris, J. R. and Ribbons, D. W.) London: Academic PressGoogle Scholar
Lowry, O. H., Roberts, N. R., Leiner, K. Y., Wu, M. L. & Farr, A. L. 1954 Histochemistry of brain. Journal of Biological Chemistry 207 117Google Scholar
Mou, L., Sullivan, J. J. & Jago, G. R. 1976 Autolysis Streptococcus cremoris. Journal of Dairy Research 43 275282Google Scholar
Niskasaari, K., Juutinen, K. M. S., Rimpiläinen, M. A. & Forsén, R. 1988 b Release of adenosine triphosphatase from Streptococcus lactis subsp. cremoris membrane: evaluation of carbohydrate in membrane and F1-ATPase preparations by polyacrylamide gel electrophoresis. Letters in Applied Microbiology, communicatedCrossRefGoogle Scholar
Niskasaari, K., Rimpiläinen, M. A., Nurmiaho-Lassila, E.-L. & Forsén, R. 1988 a Enzymatic lysis of Streptococcus lactis subsp. cremoris: a method for plasma membrane preparation of the slime-forming strain MLS96. Microbios 54 113133Google Scholar
Niskasaari, K., Valkonen, K. H. & Forsén, R. 1983 Studies to establish a reference pattern of slime-forming, encapsulated Streptococcus cremoris plasma membrane antigens by crossed immunoelectrophoresis. Electrophoresis 4 219224CrossRefGoogle Scholar
Pooley, H. M. 1976 Turnover and spreading of old wall during surface growth of Bacillus subtilis. Journal of Bacteriology 125 11271138Google Scholar
Pooley, H. M., Shockman, G. D., Higgins, M. L. & Porres-Juan, J. 1972 Some properties of two autolytic-defective mutants of Streptococcus faecalis ATCC 9790. Journal of Bacteriology 109 423431CrossRefGoogle ScholarPubMed
Ranhand, J. M., Leonard, C. G. & Cole, R. M. 1971 Autolytic activity associated with competent group H streptococci. Journal of Bacteriology 106 257268Google Scholar
Rimpiläinen, M. A., Niskasaari, K., Juutinen, K. M. S., Nurmiaho-Lassila, E.-L. & Forsén, R. I. 1986 The plasma membrane of Streptococcus cremoris: isolation and partial characterization. Journal of Applied Bacteriology 60 389394CrossRefGoogle Scholar
Rogers, H. J. & Forsberg, C. W. 1971 Role of autolysins in the killing of bacteria by some bactericidal antibiotics. Journal of Bacteriology 108 12351243CrossRefGoogle ScholarPubMed
Saxelin, M.-L., Nurmiaho-Lassila, E.-L., Meriläinen, V. T. & Forsén, R. I. 1986 Ultrastructure and host specificity of bacteriophages of Streptococcus cremoris, Streptococcus lactis subsp. diacetylactis and Leuconostoc cremoris from Finnish fermented milk ‘viili’. Applied and Environmental Microbiology 52 771777Google Scholar
Shockman, G. D., Daneo-Moore, L. & Higgins, M. L. 1974 Problems of cell wall and membrane growth, enlargement, and division. Annals of the New York Academy of Sciences 235 161197Google Scholar
Shockman, G. D., Kolb, J. J. & Toennies, G. 1958 Relations between bacterial cell wall synthesis, growth phase, and autolysis. Journal of Biological Chemistry 230 961977CrossRefGoogle ScholarPubMed
Shockman, G. D., Thompson, J. S. & Conover, M. J. 1967 The autolytic enzyme system of Streptococcus faecalis. II. Partial characterization of the autolysin and its substrate. Biochemistry 6 10541065CrossRefGoogle ScholarPubMed
Shungu, D. L., Cornett, J. B. & Shockman, G. D. 1979 Morphological and physiological study of autolytic-defective Streptococcus faecium strains. Journal of Bacteriology 138 598608Google Scholar
Suginaka, H., Shimatani, M., Ohno, Y., and Yano, I. 1979 Effects of bacterial lipids and lipoteichoic acid on extracellular autolysin activity from Staphylococcus aureus. FEMS Microbiology Letters 5 353355CrossRefGoogle Scholar
Sutherland, I. W. 1977 Bacterial exopolysaccharides – their nature and production. In Surface Carbohydrates of the Prokaryotic Cell pp. 2796 (Ed. Sutherland, I. W.) London: Academic PressGoogle Scholar
Tomasz, A. & Waks, S. 1975 Mechanism of action of penicillin: triggering of the pneumococcal autolytic enzyme by inhibitors of cell wall synthesis. Proceedings of the National Academy of Sciences of the USA 72 41624166Google Scholar
Vegarud, G., Castberg, H. B. & Langsrud, T. 1983 Autolysis of group N streptococci. Effects of media composition modifications and temperature. Journal of Dairy Science 66 22942302Google Scholar