Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-28T05:31:27.814Z Has data issue: false hasContentIssue false

Comparison of proteolytic activities in various lactobacilli

Published online by Cambridge University Press:  01 June 2009

Masahiro Sasaki
Affiliation:
Snow Brand European Research Laboratories BV, Zernikepark 6, NL-9747 AN Groningen, The Netherlands
Boukje W. Bosman
Affiliation:
Snow Brand European Research Laboratories BV, Zernikepark 6, NL-9747 AN Groningen, The Netherlands
Paris S. T. Tan
Affiliation:
Snow Brand European Research Laboratories BV, Zernikepark 6, NL-9747 AN Groningen, The Netherlands

Summary

A total of 169 Lactobacillus strains from 12 species (Lb. acidophilus, Lb. brevis, Lb. buchneri, Lb. casei, Lb. delbrueckii subsp. bulgaricus, Lb. delbrueckii subsp. delbrueckii, Lb. delbrueckii subsp. lactis, Lb. fermentum, Lb. helveticus, Lb. paracasei subsp. paracasei, Lb. plantarum and Lb. rhamnosus), isolated from raw milk and various milk products, and 9 Lactococcus lactis strains were evaluated for peptidase activities with five chromogenic substrates and a tryptic digest of casein. Within each species, the peptidase activity of the cell-free extracts of the strains varied. Furthermore, differences were observed between the Lactobacilhis species and Lc. lactis. Lb. helveticus had by far the highest hydrolysing activities towards all substrates, indicating the presence of powerful aminopeptidases, X-prolyl-dipeptidyl aminopeptidases and proline iminopeptidases. Lb. delbrueckii subsp. bulgaricus possessed high hydrolysing activities towards substrates containing proline, alanylprolyl–p–nitroanilide and prolyl–p–nitroanilide. On the other hand, Lb. fermentum and Lb. brevis could be considered as weakly proteolytic species. A more detailed study with highly proteolytic Lactobacillus strains indicated that at least three different proteinases or endopeptidases were present. Compared with Lc. lactis, the Lactobacillus strains had a much lower hydrolytic action on glutamyl-glutamic acid, suggesting that glutamyl aminopeptidase was absent in lactobacilli.

Type
Original Articles
Copyright
Copyright © Proprietors of Journal of Dairy Research 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Arora, G. & Lee, B. H. 1990 Comparative studies on peptidases of Lactobacillus casei subspecies LLG. Journal of Dairy Science 73 274279CrossRefGoogle Scholar
Arora, G., Lee, B. H. & Lamoureux, M. 1990 Characterization of enzyme profiles of Lactobacillus casei species by a rapid API ZYM system. Journal of Dairy Science 73 264273CrossRefGoogle Scholar
Atlan, D.Laloi, P. & Portalier, R. 1990 X-prolyl-dipeptidyl aminopeptidasc of Lactobacillus delbrueckii subsp. bulgaricus. Characterization of the enzyme and isolation of deficient mutants. Applied and Environmental Microbiology 56 21742179CrossRefGoogle ScholarPubMed
Bosman, B. W.Tan, P. S. T. & Konings, W. N. 1990 Purification and characterization of a tripeptidase from Lactococcus lactis subsp. cremoris Wg2. Applied, and. Environmental Microbiology 56 18391843CrossRefGoogle ScholarPubMed
Chopin, A. 1993 Organization and regulation of genes for amino acid biosynthesis in lactic acid bacteria. FEMS Microbiology Reviews 12 2137CrossRefGoogle ScholarPubMed
De Man, J. C.Rogosa, M. & Sharpe, M. E. 1960 A medium for the cultivation of lactobacilli. Journal of Applied Bacteriology 23 130135CrossRefGoogle Scholar
Dol, E.Shibata, D. & Matoba, T. 1981 Modified colorimetrio ninhydrin methods for peptidase assay. Analytical Biochemistry 118 173184Google Scholar
El Abboudi, M.El Soda, M.Pandian, S.Barreau, M.Trépanier, G. & Simard, R. E. 1992 Peptidase activities in debittering and nondebittering strains of lactobacilli. International Dairy Journal 2 5564CrossRefGoogle Scholar
Elleman, T. C. 1974 Aminopeptidases of pea. Biochemical Journal 141 113118CrossRefGoogle ScholarPubMed
Exterkate, F. A. 1975 An introductory study of the proteolytic system of the Streptococcus cremoris strain HP. Netherlands Milk and Dairy Journal 29 303318Google Scholar
Exterkate, F. A. 1990 Differences in short peptide-substrate cleavage by two cell-envelope-located serine proteinases of Lactococcus lactis subsp. cremoris are related to secondary binding specificity. Applied Microbiology and Biotechnology 33 401406CrossRefGoogle ScholarPubMed
Exterkate, F. A. & De Veer, G. J. C. M. 1987 Purification and some properties of a membrane-bound aminopeptidasc A from Streptococcus cremoris. Applied and Environmental Microbiology 53 577583CrossRefGoogle ScholarPubMed
Hacting, A.Kunji, E. R. S.Leenhouts, K. J.Poolman, B. & Konings, W. N. 1994 The di- and tripeptide transport protein of Lactococcus lactis. A new type of bacterial peptide transporter. Journal of Biological Chemistry 269 1139111399CrossRefGoogle Scholar
Hickey, M. W.Hillier, A. J. & Jago, G. R. 1983 Peptidase activities in lactobacilli. Australian Journal of Dairy Technology 38 118123Google Scholar
Hugenholtz, J.Exterkate, F. A. & Konings, W. N. 1984 The proteolytic systems of S. cremoris: an immunological analysis. Applied and Environmental Microbiology 48 11051110CrossRefGoogle ScholarPubMed
Khalid, N. M.El Soda, M. & Marth, E. H. 1991 Peptide hydrolases of Lactobacillus helveticus and Lactobacillus delbrueckii ssp. bulgaricus. Journal of Dairy Science 74 2945CrossRefGoogle Scholar
Khalid, N. M. & Marth, E. H. 1990 Purification and partial characterization of a prolyl-dipcptidyl aminopeptidase from Lactobacillus helveticus CNRZ 32. Applied and Environmental Microbiology 56 381388CrossRefGoogle ScholarPubMed
Kok, J. & De Vos, W. M. 1994 The proteolytic system of lactic acid bacteria, in Genetics and Biotechnology of Lactic Acid Bacteria, pp. 169210 (Eds Gasson, M. J. and de Vos, W. M.). Glasgow: Blackie Academic and ProfessionalCrossRefGoogle Scholar
Konings, W. N.Poolman, B. & Driessen, A. J. M. 1989 Bioenergetics and solute transport in lactococci. CRC Critical Reviews in Microbiology 16 419476CrossRefGoogle ScholarPubMed
Kunji, E. R. S.Smid, E. J.Plapf, R.Poolman, B. & Konings, W. N. 1993 Di-tripeptides and oligopeptides are taken up via distinct transport mechanisms in Lactococcus lactis. Journal of Bacteriology 175 20522059CrossRefGoogle ScholarPubMed
Laan, H.Bolhuis, H.Poolman, B.Abee, T. & Konings, W. N. 1993 Regulation of proteinase synthesis in Lactococcus lactis. Acta Biotechnologica 43 327345Google Scholar
Law, B. A. 1984 Flavour development in cheeses. In Advances in the Microbiology and Biochemistry of Cheese and Fermented Milk, pp. 187208 (Eds Davies, F. L. and Law, B. A.). London: Elsevier Applied ScienceGoogle Scholar
Marth, E. H. 1963 Microbiological and chemical aspects of Cheddar cheese ripening. A review. Journal of Dairy Science 46 869890CrossRefGoogle Scholar
Martín-Hernández, M. C.Alting, A. C. & Exterkate, F. A. 1994 Purification and characterization of the mature, membrane-associated cell-envelope proteinase of Lactobacillus helveticus L89. Applied Microbiology and Biotechnology 40 828834CrossRefGoogle Scholar
Miyakawa, H.Kobayashi, S.Shimamura, S. & Tomita, M. 1991 Purification and characterization of an X- prolyl dipcptidyl aminopeptidase from Lactobacillus delbrueckii ssp. bulgaricus LBU-147. Journal of Dairy Science 74 23752381CrossRefGoogle Scholar
Morishita, T.Deguchi, Y.Yajima, M.Sakurai, T. & Yura, T. 1981 Multiple nutritional requirements of lactobacilli: genetic lesions affecting amino acid biosynthetic pathways. Journal of Bacteriology 148 6471CrossRefGoogle ScholarPubMed
Næs, H. & Nissen-Meyer, J. 1992 Purification and N-terminal amino acid sequence determination of the cell- wall-bound proteinase from Lactobacillus paracasei subsp. paracasei. Journal of General Microbiology 138 313318CrossRefGoogle ScholarPubMed
Peterson, S. D. & Marshall, R. T. 1990 Non starter lactobacilli in Cheddar cheese. A review. Journal of Dairy Science 73 13951410CrossRefGoogle Scholar
Pritchard, G. G. & Coolbear, T. 1993 The physiology and biochemistry of the proteolytic system in lactic acid bacteria. FEMS Microbiology Reviews 12 179206CrossRefGoogle ScholarPubMed
Reiter, B. & Oram, J. D. 1962 Nutritional studies on cheese starters. 1. Vitamin and amino acid requirements of single strain starters. Journal of Dairy Research 29 6377Google Scholar
Tan, P. S. T. & Konings, W. N. 1990 Purification and characterization of an aminopeptidase from Lactococcus lactis subsp. cremoris Wg2. Applied and Environmental Microbiology 56 526532CrossRefGoogle ScholarPubMed
Tan, P. S. T.Poolman, B. & Konings, W. N. 1993 a Review article. The proteolytic enzymes of Lactococcus lactis. Journal of Dairy Research 60 269286CrossRefGoogle ScholarPubMed
Tan, P. S. T.Van Kessel, T. A. J. M.Van De Veerdonk, F. L. M.Zccrendonk, P. F.Bruins, A. P. & Konings, W. N. 1993 b Degradation and debittering of a tryptic digest from β-casein by aminopeptidase N from Lactococcus lactis subsp. cremoris Wg2. Applied and Environmental Microbiology 59 14301436CrossRefGoogle ScholarPubMed
Thomas, T. D. & Pritchard, G. G. 1987 Proteolytic enzymes of dairy starter cultures. FEMS Microbiology Reviews 46 245268CrossRefGoogle Scholar
Van Bovbn, A.Tan, P. S. T. & Konings, W. N. 1988 Purification and characterization of a dipeptidase from Streptococcus cremoris Wg2. Applied and Environmental Microbiology 54 4349CrossRefGoogle Scholar
Visser, S. 1993 Proteolytic enzymes and their relation to cheese ripening and flavour. An overview. Journal of Dairy Science 76 329350CrossRefGoogle Scholar
Wohlrab, Y. & Bockelmann, W. 1992 Purification and characterization of a dipeptidase from Lactobacillus delbrueckii subsp. bulgaricus. International Dairy Journal 2 345361CrossRefGoogle Scholar