Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-28T02:44:02.106Z Has data issue: false hasContentIssue false

Enzymic methods for estimation of the somatic cell count in bovine milk: 1. Development of assay techniques and a study of their usefulness in evaluating the somatic cell content of milk

Published online by Cambridge University Press:  01 June 2009

B. J. Kitchen
Affiliation:
Otto Madsen Dairy Research Laboratory, Department of Primary Industries, Hamilton, Brisbane, Australia, 4007

Summary

Assay procedures were developed for a number of enzymes in milk which apparently originate from leucocytes. The enzymes studied were acid phosphatase, N-acetyl-β-D-glucosaminidase, β-glucuronidase, arylsulphatase, α-mannosidase, and catalase. Quarter-milk samples were analysed for enzyme activity and results compared with the electronic cell count and the Wisconsin Mastitis Test. All enzymes measured except acid phosphatase and α-mannosidase showed good correlation with the electronic cell count. Of the other 4 enzymes tested, β-glucuronidase and arylsulphatase were unsuitable as diagnostic aids owing to the lengthy incubation periods required in their assay procedures. The assay of catalase, which involved the measurement of the initial rate of release of O2 using an O2 analyser apparatus, was rapid, sensitive and reasonably reliable, if fresh milk samples were used. The assay procedure for N-acetyl-β-D-glucosaminidase was considered to be the most reliable, simple and rapid enzymic method for estimating the number of somatic cells in milk.

Type
Research Article
Copyright
Copyright © Proprietors of Journal of Dairy Research 1976

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Anderson, M., Brooker, B. E., Andrews, A. T. & Alichanidis, E. (1974). Journal of Dairy Science 57, 1448.CrossRefGoogle Scholar
Bogin, E. & Ziv, G. (1973). Cornell Veterinarian 63, 666.Google Scholar
Bretz, U. & Baggiolini, M. (1974). Journal of Cell Biology 63, 251.CrossRefGoogle Scholar
Brown, R. W., Morse, G. E., Newbould, F. H. S. & Slanetz, L. W. (1969). Microbiological Procedures for the Diagnosis of Bovine Mastitis, pp. 45. National Mastitis Council Publications.Google Scholar
Cohn, Z. A. & Hirsch, J. G. (1960). Journal of Experimental Medicine 112, 1015.CrossRefGoogle Scholar
Haenlein, G. F. W., Schultz, L. H. & Zikakis, J. P. (1973). Journal of Dairy Science 56, 1017.CrossRefGoogle Scholar
Ingr, I., Pleva, J., Ryšánek, D., Janková, B. & Renda, V. (1973). Veterinarni Medicina 18, 153.Google Scholar
Janzen, J. J. (1968). Journal of Dairy Science 51, 1857.CrossRefGoogle Scholar
Janzen, J. J. (1969). Journal of Dairy Science 52, 329.Google Scholar
Kezdy, F. J. & Bender, M. L. (1962). Biochemistry 1, 1097.CrossRefGoogle Scholar
Kitchen, B. J. (1974). Biochimica et Biophysica Acta 356, 257.CrossRefGoogle Scholar
Kitchen, B. J., Taylor, G. C. & White, I. C. (1970). Journal of Dairy Research 37, 279.Google Scholar
Linzell, J. L. & Peaker, M. (1971). Veterinary Record 89, 393.CrossRefGoogle Scholar
Loane, P. C. (1969). Australian Journal of Dairy Technology 24, 66.Google Scholar
Lück, H. (1965). In Methods of Enzymatic Analysis, p. 885. (Ed. Bergmeyer, H. U..) New York: Academic Press.CrossRefGoogle Scholar
Macadam, I. (1958). Journal of Comparative Pathology 68, 106.CrossRefGoogle Scholar
Marquardt, R. R., Forster, T. L., Spencer, G. R. & Stabenfeldt, G. H. (1966). Journal of Dairy Science 49, 631.Google Scholar
Mellors, A. (1968). Canadian Journal of Biochemistry 46, 451.CrossRefGoogle Scholar
Mellors, A. & Harwalkar, V. R. (1968). Canadian Journal of Biochemistry 46, 1351.CrossRefGoogle Scholar
Michell, R. H., Karnovsky, M. J. & Karnovsky, M. L. (1970). Biochemical Journal 116, 207.CrossRefGoogle Scholar
Morris, M. N. & Hobbs, W. B. (1971). Journal of South African Veterinary Medical Association 42, 143.Google Scholar
Mullen, J. E. C. (1950). Journal of Dairy Research 17, 295.Google Scholar
Paape, M. J., Tucker, H. A. & Hafs, H. D. (1965). Journal of Dairy Science 48, 191.CrossRefGoogle Scholar
Patterson, D. S. P., Berrett, S. & Cullen, G. A. (1969). Veterinary Record 85, 708.CrossRefGoogle Scholar
Philpot, W. N. & Pankey, J. W. Jr (1973). Journal of Milk and Food Technology 36, 94.CrossRefGoogle Scholar
Read, R. B., Reyes, A. L., Bradshaw, J. G. & Peeler, J. T. (1969). Journal of Dairy Science 52, 1359.CrossRefGoogle Scholar
Renner, E. (1974). Tierzüchter 26, 18.Google Scholar
Roy, A. B. (1953). Biochemical Journal 53, 12.CrossRefGoogle Scholar
Schalm, O. W. & Lasmanis, J. (1968). Journal of American Veterinary Medical Association 153, 1688.Google Scholar
Taylor, G. C. & Kitchen, B. J. (1970). 18th International Dairy Congress, Sydney 1E, 624.Google Scholar
Thompson, D. I. & Postle, D. S. (1964). Journal of Milk and Food Technology 27, 271.CrossRefGoogle Scholar
Tolle, A., Zeidler, H. & Heeschen, W. (1966). Milchwissenschaft 21, 93.Google Scholar
Whittlestone, W. (1974). 19th International Dairy Congress, New Delhi 1E, 528.Google Scholar