Published online by Cambridge University Press: 01 June 2009
Four studies are described of the role of friction in maintaining the teatcup stable on the teat. Measurements of the coefficient of friction between teats and pieces of liners, in which most values for the coefficient fell between 0·5 and 1·0, indicated that friction between skin and rubber-like materials was consistent with the general frictional behaviour of elastic solids. Studies during milking showed that the sudden restriction of milk flow that normally occurs near the end of milking is accompanied by a marked fall in the frictional force between the teat and barrel of the open liner. During the period of peak milk flow-rate, the major source of friction maintaining the teatcup stable on the teat is the large area of contact between the teat and liner barrel. The frictional force is derived from the pressure difference across the teat wall which presses the teat against the comparatively rigid liner. Frictional force between the teat and barrel increases after the start of milking because the coefficient of friction rises as one surface gradually moulds to the other. In addition, the total frictional force increases because of the increasing area of contact whenever the teat moves deeper into the liner, until the end of the peak flow-rate period. When this period ends, friction between the teat and open barrel is reduced suddenly because the teat sinus pressure falls. After this stage, the main source of friction appears to be derived from the force between the teat and mouthpiece lip.