Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-28T05:25:01.940Z Has data issue: false hasContentIssue false

Microfiltration performance: physicochemical aspects of whey pretreatment

Published online by Cambridge University Press:  01 June 2009

Genevieve Gesan
Affiliation:
INRA, Laboratoire de Recherches de Technologie Laitière, 65 rue de Saint Brieuc, 35042 Rennes Cédex, France
Georges Daufin
Affiliation:
INRA, Laboratoire de Recherches de Technologie Laitière, 65 rue de Saint Brieuc, 35042 Rennes Cédex, France
Uzi Merin
Affiliation:
Dairy Science Laboratory, Agricultural Research Organization, The Volcani Center, PO Box 6, Bet Dagan 50250, Israel
Jean-Pierre Labbe
Affiliation:
Ecole Nationale Supérieure de Chimie, 11 rue Pierre et Marie Curie, 75231 Paris Cédex 05France
Auguste Quemerais
Affiliation:
Université Rennes I, Laboratoire de Spectroscopie, UA CNRS 1202, Avenue du Général Leclerc, Campus de Beaulieu, 35042 Rennes Cédex, France

Summary

Clarification of whey by microfiltration (MF) can be achieved after appropriate pretreatment of the feed. A control pretreatment consists of a physicochemical process comprising increased ionic calcium and pH accompanied by heat (50 °C, 15 min) to cause aggregation of complex lipid–calcium phosphate particles, which are then separated by MF. This pretreatment process was modified by increasing the temperature to 55 °C and by maintaining the pH constant during heat treatment. This modification resulted in larger calcium phosphate particles and a lower content of soluble calcium and phosphate ions. As a consequence, a longer period of MF operation, better whey clarification and lower calcium and phosphate content of the filtrate were achieved. This suggests that a loosely structured deposit was formed on the membrane surface which was less resistant to filtration than that resulting from the control pretreatment. During MF, it was necessary to avoid zones of high shear in the retentate compartment that might cause physical alteration of the aggregates.

Type
Original Articles
Copyright
Copyright © Proprietors of Journal of Dairy Research 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Baker, R. J., Fane, A. G., Fell, C. J. D. & Yoo, B. H. 1985 Factors affecting flux in cross flow filtration. Desalination 53 8193CrossRefGoogle Scholar
Daufin, G., Labbé, J.-P., Quémerais, A. & Michel, F. 1991 a Fouling of an inorganic membrane during ultrafiltration of defatted whey protein concentrates. Netherlands Milk and Dairy Journal 45 259272Google Scholar
Daufin, G., Labbé, J.-P., Quémerais, A., Michel, F. & Merin, U. 1994 Optimizing clarified whey ultrafiltration: influence of pH. Journal of Dairy Research 61 355363CrossRefGoogle Scholar
Daufin, G., Merin, U., Labbé, J.-P., Quémerais, A. & Kerhervé, F.-L. 1991 b Cleaning of inorganic membranes after whey and milk ultrafiltration. Biotechnology and Bioengineering 38 8289CrossRefGoogle ScholarPubMed
Daufin, G., Michel, F., Labbé, J.-P., Quémerais, A. & Grangeon, A. 1993 a Ultrafiltration of defatted whey: improving performance by limiting membrane fouling. Journal of Dairy Research 60 7988CrossRefGoogle Scholar
Daufin, G., Radenac, J.-F., Gésan, G., Kerhervé, F.-L., Le Berre, O., Michel, F. & Merin, U. 1993 b A novel rig design for ultra- and microfiltration experiments. Separation Science and Technology 28 16351642CrossRefGoogle Scholar
Dumon, S. & Barnier, H. 1992 Ultrafiltration of protein solutions on zirconia membranes. The influence of surface chemistry and solution chemistry on adsorption. Journal of Membrane Science 74 289302CrossRefGoogle Scholar
Fauquant, J., Vieco, E., Brulé, G. & Maubois, J.-L. 1985 [Sweet whey clarification by heating in the presence of calcium to remove residual fat.] Lait 65 120CrossRefGoogle Scholar
Gésan, G. 1993 [Crossflow microfiltration of pretreated sweet whey: Mechanisms and operating conditions.] PhD Thesis, University of Rennes IGoogle Scholar
Gésan, G., Daufin, G. & Merin, U. 1994 Whey crossflow microfiltration using an M14 Carbosep membrane: influence of initial hydraulic resistance. Lait 74 267279CrossRefGoogle Scholar
Gésan, G., Daufin, G., Merin, U., Labbé, J. P. & Quémerais, A. 1993 a Fouling during constant flux crossflow microfiltration of pretreated whey. Influence of transmembrane pressure gradient. Journal of Membrane Science 80 131145CrossRefGoogle Scholar
Gésan, G., Merin, U., Daufin, G. & Maugas, J.-J. 1993 b Performance of an industrial cross-flow microfiltration plant for clarifying rennet whey. Netherlands Milk and Dairy Journal 47 121135Google Scholar
Hayes, J. F., Dunkerley, J. A., Muller, L. L. & Griffin, A. T. 1974 Studies on whey processing by ultrafiltration. II. Improving permeation rates by preventing fouling. Australian Journal of Dairy Technology 29 132140Google Scholar
Kessler, H. G. 1981 Food Engineering and Dairy Technology. Freising: A. KesslerGoogle Scholar
Labbé, J.-P., Quémerais, A., Michel, F. & Daufin, G. 1990 Fouling of inorganic membranes during whey ultrafiltration: analytical methodology. Journal of Membrane Science 51 293307CrossRefGoogle Scholar
Lee, D. N. & Merson, R. L. 1976 Prefiltration of cottage cheese whey to reduce fouling of ultrafiltration membranes. Journal of Food Science 41 403410CrossRefGoogle Scholar
Lu, W. M. & Ju, S.-C. 1989 Selective particle deposition in cross flow filtration. Separation Science and Technology 24 517540CrossRefGoogle Scholar
Mackley, M. R. & Sherman, N. E. 1992 Cross flow cake filtration mechanisms and kinetics. Chemical and Engineering Science 47 30673084CrossRefGoogle Scholar
Maiorella, B., Dorin, G., Carion, A. & Harano, D. 1991 Crossflow microfiltration of animal cells. Biotechnology and Bioengineering 37 121126CrossRefGoogle ScholarPubMed
Maubois, J. L., Pierre, A., Fauquant, J. & Piot, M. 1987 Industrial fractionation of main whey proteins. International Dairy Federation Bulletin no. 212 154159Google Scholar
Muller, L. L., Hayes, J. F. & Griffin, A. T. 1973 Studies on whey processing by ultrafiltration. 1. Comparative performance of various ultrafiltration modules on whey from hydrochloric acid casein and Cheddar cheese. Australian Journal of Dairy Technology 28 7077Google Scholar
Pearce, R. J., Marshall, S. C. & Dunkerley, J. A. 1992 Reduction of lipids in whey protein concentrates by microfiltration. Effect on functional properties. In New Application Membrane Processes. International Dairy Federation Bulletin Special Issue no. 9201 118129Google Scholar
Pierre, A., Le Graet, Y., Daufin, G., Michel, F. & Gesan, G. 1994 Whey microfiltration performance: influence of protein concentration by ultrafiltration and of physicochemical pretreatment. Lait 74 6577CrossRefGoogle Scholar
Pierre, A., Le Graet, Y., Fauquant, J., Piot, M., Durier, C. & Kobilinsky, A. 1992 [Influence of physicochemical parameters on whey clarification.] Lait 72 405420CrossRefGoogle Scholar
Sandblom, R. M. 1974 Filtering Process. Swedish Paten. 7 416 257Google Scholar
Taddéi, C., Aimar, P., Daufin, G. & Sanchez, V. 1986 [Mass transfer during sweet whey ultrafiltration using an inorganic membrane.] Lait 66 371390Google Scholar
Tarleton, E. S. & Wakeman, R.J. 1993 Understanding flux decline in crossflow microfiltration. Part 1. Effects of particle and pore size. Transactions of the Institution of Chemical Engineers 71A 399410Google Scholar
Wakeman, R. J. & Tarleton, E. S. 1991 Colloidal fouling of microfiltration membranes during the treatment of aqueous feed streams. Desalination 83 3552CrossRefGoogle Scholar