Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-26T20:51:58.178Z Has data issue: false hasContentIssue false

Role of mammary casein kinase in the phosphorylation of milk proteins

Published online by Cambridge University Press:  01 June 2009

Elizabeth W. Bingham
Affiliation:
Eastern Regional Research Center*, Philadelphia, Pennsylvania 19118, USA

Summary

Casein kinase from lactating bovine mammary gland catalyses the transfer of the terminal phosphoryl group of ATP to specific serine residues in dephosphorylated caseins. Best substrates for casein kinase are the dephosphorylated proteins (bovine αs1 - and β-caseins and pepsin), unphosphorylated human β-casein and the dephosphorylated peptide (residues 1–25) from bovine β-casein. Results obtained with bovine and human β-caseins indicate that the two serines underlined in the cluster Ser-Leu-Ser-Ser-Ser are particularly susceptible to the action of casein kinase. Since a similar sequence is found in dephosphorylated αs1-casein, it is probable that serines in this region of αs1-casein are also phosphorylated. The results support the concept that certain serines in casein are particularly susceptible to phosphorylation by casein kinase.

Type
Section A. Biological Aspects of Milk Proteins
Copyright
Copyright © Proprietors of Journal of Dairy Research 1979

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bingham, E. W. & Farrell, H. M. Jr (1974). Journal of Biological Chemistry 249, 3647.CrossRefGoogle Scholar
Bingham, E. W., Farrell, H. M. Jr & Basch, J. J. (1972). Journal of Biological Chemistry 247, 8193.CrossRefGoogle Scholar
Bingham, E. W. & Groves, M. L. (1979). Journal of Biological Chemistry 254, (in the Press)CrossRefGoogle Scholar
Brignon, G., Ribadeau Dumas, B., Mercier, J. C., Pelissier, J. P. & Das, B. C. (1977). FEBS Letters 76, 274.CrossRefGoogle Scholar
Chew, L. F. & Mackinlay, A. G. (1974). Biochimica et Biophysica Acta 359, 73.CrossRefGoogle Scholar
Greenberg, R., Groves, M. L. & Peterson, R. F. (1976). Journal of Dairy Science 59, 1016.CrossRefGoogle Scholar
Mackinlay, A. G., West, D. W. & Manson, W. (1977). European Journal of Biochemistry 76, 233.CrossRefGoogle Scholar
Manson, W., Carolan, T. & Annan, W. D. (1977). European Journal of Biochemistry 78, 411.CrossRefGoogle Scholar
Mercier, J. C., F., Grosclaude & Ribadeau Dumas, B. (1972). Milchwissenschaft 27, 402.Google Scholar
Sepulveda, P., Marciniszyn, J. Jr, Liu, D. & Tang, J. (1975). Journal of Biological Chemistry 250, 5082.CrossRefGoogle Scholar
Singh, V. N., Dave, S. S. & Venkitasubramanian, T. A. (1967). Biochemistry Journal 104, 48C.CrossRefGoogle Scholar
Turkington, R. W. & Topper, Y. J. (1966). Biochimica et Biophysica Acta 127, 366.CrossRefGoogle Scholar
Vreeman, H. J., Both, P., Brinkhuis, J. A. & Van Der Spek, C. (1977). Biochimica et Biophysica Acta 491, 93.CrossRefGoogle Scholar
Mcl, Whitney R., Brunner, J. R., Ebner, K. E., Farrell, H. M. Jr, Josephson, R. V., Morr, C. V. & Swaisgood, H. E. (1976). Journal of Dairy Science 59, 795.Google Scholar