Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-10T11:13:15.478Z Has data issue: false hasContentIssue false

Maternal high-fat diet induces follicular atresia but does not affect fertility in adult rabbit offspring

Published online by Cambridge University Press:  11 February 2014

Pauline Léveillé
Affiliation:
INRA, UMR1198 Biologie du Développement et Reproduction, F-78350 Jouy-en-Josas, France ENVA, F-94700 Maisons Alfort, France Université Paris 13, Sorbonne Paris Cité, Unité de Recherche en Epidémiologie Nutritionnelle (UREN), F-93000, Bobigny, France APHP, Hôpital Jean-Verdier, F-93140,Bondy, France
Anne Tarrade
Affiliation:
INRA, UMR1198 Biologie du Développement et Reproduction, F-78350 Jouy-en-Josas, France ENVA, F-94700 Maisons Alfort, France PremUp, 4 av. de l’Observatoire, F-75006 Paris, France
Charlotte Dupont
Affiliation:
INRA, UMR1198 Biologie du Développement et Reproduction, F-78350 Jouy-en-Josas, France ENVA, F-94700 Maisons Alfort, France Université Paris 13, Sorbonne Paris Cité, Unité de Recherche en Epidémiologie Nutritionnelle (UREN), F-93000, Bobigny, France APHP, Hôpital Jean-Verdier, F-93140,Bondy, France
Thibaut Larcher
Affiliation:
INRA, UMR 703 APEX, Oniris, F-44307 Nantes, France
Michèle Dahirel
Affiliation:
INRA, UMR1198 Biologie du Développement et Reproduction, F-78350 Jouy-en-Josas, France ENVA, F-94700 Maisons Alfort, France PremUp, 4 av. de l’Observatoire, F-75006 Paris, France
Elodie Poumerol
Affiliation:
INRA, UMR1198 Biologie du Développement et Reproduction, F-78350 Jouy-en-Josas, France ENVA, F-94700 Maisons Alfort, France
Ann-Gaël Cordier
Affiliation:
INRA, UMR1198 Biologie du Développement et Reproduction, F-78350 Jouy-en-Josas, France ENVA, F-94700 Maisons Alfort, France APHP, Hôpital Antoine Béclère, Service de Gynécologie-Obstétrique et Médecine de la Reproduction, F-92141, Clamart, France
Olivier Picone
Affiliation:
INRA, UMR1198 Biologie du Développement et Reproduction, F-78350 Jouy-en-Josas, France ENVA, F-94700 Maisons Alfort, France
Béatrice Mandon-Pepin
Affiliation:
INRA, UMR1198 Biologie du Développement et Reproduction, F-78350 Jouy-en-Josas, France ENVA, F-94700 Maisons Alfort, France
Geneviève Jolivet
Affiliation:
INRA, UMR1198 Biologie du Développement et Reproduction, F-78350 Jouy-en-Josas, France ENVA, F-94700 Maisons Alfort, France
Rachel Lévy
Affiliation:
Université Paris 13, Sorbonne Paris Cité, Unité de Recherche en Epidémiologie Nutritionnelle (UREN), F-93000, Bobigny, France APHP, Hôpital Jean-Verdier, F-93140,Bondy, France
Pascale Chavatte-Palmer*
Affiliation:
INRA, UMR1198 Biologie du Développement et Reproduction, F-78350 Jouy-en-Josas, France ENVA, F-94700 Maisons Alfort, France PremUp, 4 av. de l’Observatoire, F-75006 Paris, France
*
*Address for correspondence: Pascale Chavatte-Palmer, UMR1198 Biologie du Développement et Reproduction, F-78350 Jouy-en-Josas, France. (Email pascale.chavatte@jouy.inra.fr)

Abstract

Alterations to the metabolic environment in utero can have an impact on subsequent female reproductive performance. Here, we used a model of rabbits receiving a high-fat diet (H diet; 7.7% fat and 0.2% cholesterol) or a control diet (C diet; 1.8% fat, no cholesterol) from 10 weeks of age up to mating at 27 weeks and throughout gestation and lactation. At weaning at 5 weeks of age, F1 female offspring were placed on either C or H diet, resulting in a total of four groups C/C, C/H, H/C and H/H diet. Female offspring were mated between 18 and 22 weeks of age and euthanized at 28 days of gestation. A few days before mating and/or just before euthanasia, F1 female rabbits were fasted overnight, weighed, and blood sampled for steroids and biochemistry. Organs were weighed at euthanasia and the ovaries were collected. C/H and H/H F1 offspring had higher cholesterol and high-density lipoprotein plasma concentrations, together with a higher fat mass compared with C/C does, reflecting the effect of the postnatal diet; however, no effect of the antenatal diet was observed on most parameters. The number of primordial, primary and secondary follicles were not different between the groups, but a significantly higher number of atretic follicles was observed in the C/H (P<0.001) and in the H/C (P<0.001) compared with control C/C ovaries, demonstrating both an effect of prenatal and postnatal maternal nutrition. These data indicated that both maternal and postnatal high-fat diet may induce follicular apoptosis; however, in this model, the reproduction was not affected.

Type
Original Article
Copyright
© Cambridge University Press and the International Society for Developmental Origins of Health and Disease 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Barker, DJ. Fetal origins of coronary heart disease. BMJ, 1995; 311, 171174.Google Scholar
2. Seidell, JC. Obesity, insulin resistance and diabetes – a worldwide epidemic. Br J Nutr, 2000; 83(Suppl 1), S5S8.CrossRefGoogle ScholarPubMed
3. Dubuisson, C, Lioret, S, Touvier, M, et al. Trends in food and nutritional intakes of French adults from 1999 to 2007: results from the INCA surveys. Br J Nutr, 2010; 103, 10351048.CrossRefGoogle ScholarPubMed
4. Lawlor, DA, Relton, C, Sattar, N, Nelson, SM. Maternal adiposity--a determinant of perinatal and offspring outcomes? Nat Rev Endocrinol, 2012; 8, 679688.Google Scholar
5. Shankar, K, Harrell, A, Liu, X, et al. Maternal obesity at conception programs obesity in the offspring. Am J Physiol Regul Integr Comp Physiol, 2008; 294, R528R538.CrossRefGoogle ScholarPubMed
6. Armitage, JA, Poston, L, Taylor, PD. Developmental origins of obesity and the metabolic syndrome: the role of maternal obesity. Front Horm Res, 2008; 36, 7384.Google Scholar
7. Dabelea, D, Crume, T. Maternal environment and the transgenerational cycle of obesity and diabetes. Diabetes, 2011; 60, 18491855.Google Scholar
8. Frias, AE, Grove, KL. Obesity: a transgenerational problem linked to nutrition during pregnancy. Semin Reprod Med, 2012; 30, 472478.Google Scholar
9. Gardner, DS, Ozanne, SE, Sinclair, KD. Effect of the early-life nutritional environment on fecundity and fertility of mammals. Philos Trans R Soc Lond B Biol Sci, 2009; 364, 34193427.Google Scholar
10. Sloboda, DM, Hickey, M, Hart, R. Reproduction in females: the role of the early life environment. Hum Reprod Update, 2011; 17, 210227.Google Scholar
11. Dupont, C, Cordier, AG, Junien, C, et al. Maternal environment and the reproductive function of the offspring. Theriogenology, 2012; 78, 14051414.Google Scholar
12. Meikle, D, Westberg, M. Maternal nutrition and reproduction of daughters in wild house mice (Mus musculus). Reproduction, 2001; 122, 437442.CrossRefGoogle ScholarPubMed
13. Bernal, AB, Vickers, MH, Hampton, MB, Poynton, RA, Sloboda, DM. Maternal undernutrition significantly impacts ovarian follicle number and increases ovarian oxidative stress in adult rat offspring. PLoS One, 2010; 5, e15558.Google Scholar
14. Mossa, F, Carter, F, Walsh, SW, et al. Maternal undernutrition in cows impairs ovarian and cardiovascular systems in their offspring. Biol Reprod, 2013; 88, 92.Google Scholar
15. Murdoch, WJ, Van Kirk, EA, Vonnahme, KA, Ford, SP. Ovarian responses to undernutrition in pregnant ewes, USA. Reprod Biol Endocrinol, 2003; 1, 6.Google Scholar
16. Rae, MT, Palassio, S, Kyle, CE, et al. Effect of maternal undernutrition during pregnancy on early ovarian development and subsequent follicular development in sheep fetuses. Reproduction, 2001; 122, 915922.Google Scholar
17. Long, NM, Ford, SP, Nathanielsz, PW. Multigenerational effects of fetal dexamethasone exposure on the hypothalamic–pituitary–adrenal axis of first- and second-generation female offspring. Am J Obstet Gynecol, 2013; 208, 217 e211217 e218.Google Scholar
18. Painter, RC, Westendorp, RG, de Rooij, SR, et al. Increased reproductive success of women after prenatal undernutrition. Hum Reprod, 2008; 23, 25912595.Google Scholar
19. Yarde, F, Broekmans, FJ, van der Pal-de Bruin, KM, et al. Prenatal famine, birthweight, reproductive performance and age at menopause: the Dutch hunger winter families study. Hum Reprod, 2013; 28, 33283336.Google Scholar
20. Lumey, LH, Stein, AD. In utero exposure to famine and subsequent fertility: The Dutch Famine Birth Cohort Study. Am J Public Health, 1997; 87, 19621966.Google Scholar
21. Hernandez, MI, Martinez-Aguayo, A, Cavada, G, et al. Accelerated early pubertal progression, ovarian morphology, and ovarian function in prospectively followed low birth weight (LBW) girls. J Pediatr Endocrinol Metab, 2013; 26, 223230.CrossRefGoogle ScholarPubMed
22. Robker, RL, Akison, LK, Bennett, BD, et al. Obese women exhibit differences in ovarian metabolites, hormones, and gene expression compared with moderate-weight women. J Clin Endocrinol Metab, 2009; 94, 15331540.Google Scholar
23. Brannian, J, Eyster, K, Greenway, M, et al. Progressive obesity leads to altered ovarian gene expression in the Lethal Yellow mouse: a microarray study. J Ovarian Res, 2009; 2, 10.Google Scholar
24. Kajihara, T, Uchino, S, Suzuki, M, et al. Increased ovarian follicle atresia in obese Zucker rats is associated with enhanced expression of the forkhead transcription factor FOXO1. Med Mol Morphol, 2009; 42, 216221.Google Scholar
25. Serke, H, Nowicki, M, Kosacka, J, et al. Leptin-deficient (ob/ob) mouse ovaries show fatty degeneration, enhanced apoptosis and decreased expression of steroidogenic acute regulatory enzyme. Int J Obes (Lond), 2012; 36, 10471053.Google Scholar
26. Nteeba, J, Ortinau, LC, Perfield, JW 2nd, Keating, AF. Diet-induced obesity alters immune cell infiltration and expression of inflammatory cytokine genes in mouse ovarian and peri-ovarian adipose depot tissues. Mol Reprod Dev, 2013; 80, 948958.Google Scholar
27. Nteeba, J, Ross, JW, Perfield Ii, JW, Keating, AF. High fat diet induced obesity alters ovarian phosphatidylinositol-3 kinase signaling gene expression. Reprod Toxicol, 2013; 42, 6877.CrossRefGoogle ScholarPubMed
28. Keim, SA, Branum, AM, Klebanoff, MA, Zemel, BS. Maternal body mass index and daughters' age at menarche. Epidemiology, 2009; 20, 677681.Google Scholar
29. Boynton-Jarrett, R, Rich-Edwards, J, Fredman, L, et al. Gestational weight gain and daughter's age at menarche. J Womens Health (Larchmt), 2011; 20, 11931200.CrossRefGoogle ScholarPubMed
30. Sauerbrun-Cutler, MT, Segars, JH. Do in utero events contribute to current health disparities in reproductive medicine? Semin Reprod Med, 2013; 31, 325332.CrossRefGoogle ScholarPubMed
31. Hilakivi-Clarke, L, Clarke, R, Onojafe, I, et al. A maternal diet high in n − 6 polyunsaturated fats alters mammary gland development, puberty onset, and breast cancer risk among female rat offspring. Proc Natl Acad Sci U S A, 1997; 94, 93729377.Google Scholar
32. Sloboda, DM, Howie, GJ, Pleasants, A, Gluckman, PD, Vickers, MH. Pre- and postnatal nutritional histories influence reproductive maturation and ovarian function in the rat. PLoS One, 2009; 4, e6744.Google Scholar
33. Connor, KL, Vickers, MH, Beltrand, J, Meaney, MJ, Sloboda, DM. Nature, nurture or nutrition? Impact of maternal nutrition on maternal care, offspring development and reproductive function. J Physiol, 2012; 590(Pt 9), 21672180.Google Scholar
34. Mitra, A, Alvers, KM, Crump, EM, Rowland, NE. Effect of high-fat diet during gestation, lactation, or postweaning on physiological and behavioral indexes in borderline hypertensive rats. Am J Physiol Regul Integr Comp Physiol, 2009; 296, R20R28.Google Scholar
35. Da Silva, P, Aitken, RP, Rhind, SM, Racey, PA, Wallace, JM. Impact of maternal nutrition during pregnancy on pituitary gonadotrophin gene expression and ovarian development in growth-restricted and normally grown late gestation sheep fetuses. Reproduction, 2002; 123, 769777.CrossRefGoogle ScholarPubMed
36. Da Silva, P, Aitken, RP, Rhind, SM, Racey, PA, Wallace, JM. Effect of maternal overnutrition during pregnancy on pituitary gonadotrophin gene expression and gonadal morphology in female and male foetal sheep at day 103 of gestation. Placenta, 2003; 24, 248257.CrossRefGoogle ScholarPubMed
37. Gonzalez-Anover, P, Encinas, T, Sanz, E, et al. Preovulatory follicle dynamics and ovulatory efficiency in sows with thrifty genotype and leptin resistance due to leptin receptor gene polymorphisms (Iberian pig). Gen Comp Endocrinol, 2011; 170, 200206.Google Scholar
38. Fischer, B, Chavatte-Palmer, P, Viebahn, C, Navarrete Santos, A, Duranthon, V. Rabbit as a reproductive model for human health. Reproduction, 2012; 144, 110.Google Scholar
39. Montoudis, A, Simoneau, L, Brissette, L, et al. Impact of a cholesterol enriched diet on maternal and fetal plasma lipids and fetal deposition in pregnant rabbits. Life Sci, 1999; 64, 24392450.Google Scholar
40. Montoudis, A, Boileau, S, Simoneau, L, Lafond, J. Impact of an enriched-cholesterol diet on enzymatic cholesterol metabolism during rabbit gestation. Life Sci, 2003; 73, 14631477.Google Scholar
41. Napoli, C, Witztum, JL, Calara, F, de Nigris, F, Palinski, W. Maternal hypercholesterolemia enhances atherogenesis in normocholesterolemic rabbits, which is inhibited by antioxidant or lipid-lowering intervention during pregnancy: an experimental model of atherogenic mechanisms in human fetuses. Circ Res, 2000; 87, 946952.Google Scholar
42. Cordier, AG, Leveille, P, Dupont, C, et al. Dietary lipid and cholesterol induce ovarian dysfunction and abnormal LH response to stimulation in rabbits. PLoS One, 2013; 8, e63101.Google Scholar
43. Picone, O, Laigre, P, Fortun-Lamothe, L, et al. Hyperlipidic hypercholesterolemic diet in prepubertal rabbits affects gene expression in the embryo, restricts fetal growth and increases offspring susceptibility to obesity. Theriogenology, 2011; 75, 287299.Google Scholar
44. Daniel-Carlier, N, Harscoet, E, Thepot, D, et al. Gonad differentiation in the rabbit: evidence of species-specific features. PLoS One, 2013; 8, e60451.CrossRefGoogle ScholarPubMed
45. Marchut, M. In vitro metabolism of [4-14C] androstenedione and [4-14C] testosterone by rabbit placenta. Endocrinol Exp, 1977; 11, 139146.Google Scholar
46. Sagae, SC, Menezes, EF, Bonfleur, ML, et al. Early onset of obesity induces reproductive deficits in female rats. Physiol Behav, 2012; 105, 11041111.Google Scholar
47. Wu, LL, Dunning, KR, Yang, X, et al. High-fat diet causes lipotoxicity responses in cumulus-oocyte complexes and decreased fertilization rates. Endocrinology, 2010; 151, 54385445.CrossRefGoogle ScholarPubMed
48. Driancourt, MA, Fair, T, Reynaud, K. [Oocyte apoptosis: when, how, why?]. Contracept Fertil Sex, 1998; 26, 522527.Google Scholar
49. Lee, W, Xu, M, Li, Y, et al. Free cholesterol accumulation impairs antioxidant activities and aggravates apoptotic cell death in menadione-induced oxidative injury. Arch Biochem Biophys, 2011; 514, 5767.Google Scholar
50. Billig, H, Furuta, I, Hsueh, AJ. Estrogens inhibit and androgens enhance ovarian granulosa cell apoptosis. Endocrinology, 1993; 133, 22042212.Google Scholar
51. Otala, M, Makinen, S, Tuuri, T, et al. Effects of testosterone, dihydrotestosterone, and 17beta-estradiol on human ovarian tissue survival in culture. Fertil Steril, 2004; 82(Suppl 3), 10771085.Google Scholar
52. Chretien, FC. [A study of the origin, migration and multiplication of the germ-cells of the rabbit embryo]. J Embryol Exp Morphol, 1966; 16, 591607.Google Scholar
53. Gondos, B. Ultrastructure of the germinal epithelium during oogenesis in the rabbit. J Exp Zool, 1969; 172, 465479.Google Scholar
54. Lee, VH, Britt, JH, Dunbar, BS. Localization of laminin proteins during early follicular development in pig and rabbit ovaries. J Reprod Fertil, 1996; 108, 115122.Google Scholar
55. Lee, VH, Dunbar, BS. Developmental expression of the rabbit 55-kDa zona pellucida protein and messenger RNA in ovarian follicles. Dev Biol, 1993; 155, 371382.Google Scholar
Supplementary material: File

Léveillé Supplementary Material

Tables and Figures

Download Léveillé Supplementary Material(File)
File 1.5 MB