Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-10T09:03:52.422Z Has data issue: false hasContentIssue false

Maternal intake of alpha-lipoic acid prevents development of symptoms associated with a fructose-rich diet in the male offspring in Wistar rats

Published online by Cambridge University Press:  11 December 2020

María Belén Rabaglino*
Affiliation:
Instituto de Investigaciones en Ciencias de la Salud (INICSA-CONICET). Pabellón Biología Celular, Universidad Nacional de Córdoba, Ciudad Universitaria, 5000Córdoba, Argentina
María José Moreira-Espinoza
Affiliation:
Instituto de Investigaciones en Ciencias de la Salud (INICSA-CONICET). Pabellón Biología Celular, Universidad Nacional de Córdoba, Ciudad Universitaria, 5000Córdoba, Argentina Instituto de Biología Celular (IBC-UNC), Cátedra de Biología Celular, Histología y Embriología, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Ciudad Universitaria, 5000Córdoba, Argentina
Clarisa Lagares
Affiliation:
Instituto de Investigaciones en Ciencias de la Salud (INICSA-CONICET). Pabellón Biología Celular, Universidad Nacional de Córdoba, Ciudad Universitaria, 5000Córdoba, Argentina
Maria Isabel Garay
Affiliation:
Instituto de Investigaciones en Ciencias de la Salud (INICSA-CONICET). Pabellón Biología Celular, Universidad Nacional de Córdoba, Ciudad Universitaria, 5000Córdoba, Argentina Instituto de Biología Celular (IBC-UNC), Cátedra de Biología Celular, Histología y Embriología, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Ciudad Universitaria, 5000Córdoba, Argentina
Patricia Quiroga
Affiliation:
Instituto de Biología Celular (IBC-UNC), Cátedra de Biología Celular, Histología y Embriología, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Ciudad Universitaria, 5000Córdoba, Argentina
María Eugenia Pasqualini
Affiliation:
Instituto de Investigaciones en Ciencias de la Salud (INICSA-CONICET). Pabellón Biología Celular, Universidad Nacional de Córdoba, Ciudad Universitaria, 5000Córdoba, Argentina Instituto de Biología Celular (IBC-UNC), Cátedra de Biología Celular, Histología y Embriología, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Ciudad Universitaria, 5000Córdoba, Argentina
Flavio Francini
Affiliation:
Centro de Endocrinología Experimental y Aplicada (CENEXA), UNLP-CONICET-FCM, 1900La Plata, Argentina
Dante Beltramo
Affiliation:
CE.PRO.COR, CONICET, Av. Alvarez de Arenales 180, 5004Córdoba, Argentina
*
Address for correspondence: Maria Belen Rabaglino, DVM, MSc, PhD., Instituto de Investigaciones en Ciencias de la Salud (INICSA-CONICET), Pabellón Biología Celular, Universidad Nacional de Córdoba, Ciudad Universitaria, 5000Córdoba, Argentina. Email: belenrabaglino@icloud.com

Abstract

The hypothesis was that maternal intake of the antioxidant alpha-lipoid acid (ALA), during the developmental period of the hypothalamic orexigenic neurons, causes a permanent beneficial effect in offspring metabolism. Pregnant Wistar rats were fed with standard diet (food) + ALA (0.4% wt/wt) from day 14 of gestation to day 20 of lactation (n = 4) or food (n = 4). At 3 months of age, male offspring born from ALA-fed rats or controls (CT) were randomly assigned to be fed with food + 10% fructose solution in drinking water (F) or food + tap water (C), resulting in four groups: ALAF, ALAC, CTF, and CTC (n = 5/group). Food intake and body weight (BW) were measured twice a week for 31 days. Metabolites’ levels in blood, mRNA expressions of Npy, Agrp (hypothalamus), Fasn, Srebf1, Ppard, and Pparg (liver), and the antioxidant capacity of the liver were determined. Results significance was set at p < 0.05. Average BW gain, daily BW gain, and intraabdominal fat tissue at necropsy were higher in CTF group followed by CTC, ALAF, and ALAC groups. There were no differences between groups in Kcal intake per day. mRNA expressions of hypothalamic and hepatic genes and plasmatic levels of glucose and triglycerides were higher in CTF group followed by ALAF, CTC, and ALAC groups. Fructose intake affected the oxidative capacity of the liver, but this effect was not observed in the ALAF group. In conclusion, maternal ALA intake protected the adult offspring to develop metabolic symptoms associated with high fructose in the drinking water.

Type
Original Article
Copyright
© The Author(s), 2020. Published by Cambridge University Press in association with International Society for Developmental Origins of Health and Disease

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

McMillen, IC, Robinson, JS. Developmental origins of the metabolic syndrome: prediction, plasticity, and programming. Physiol Rev. 2005; 85, 571633.CrossRefGoogle ScholarPubMed
Rabaglino, MB, Moreira-Espinoza, MJ, Lopez, JP, et al. Maternal Triclosan consumption alters the appetite regulatory network on Wistar rat offspring and predispose to metabolic syndrome in the adulthood. Endocr J. 2016; 63, 10071016.CrossRefGoogle ScholarPubMed
Moreno-Mendez, E, Quintero-Fabian, S, Fernandez-Mejia, C, et al. Early-life programming of adipose tissue. Nutr Res Rev. 2020; 33, 244259.CrossRefGoogle ScholarPubMed
Rolfo, A, Nuzzo, AM, De Amicis, R, et al. Fetal-maternal exposure to endocrine disruptors: correlation with diet intake and pregnancy outcomes. Nutrients. 2020; 12, 1744.CrossRefGoogle ScholarPubMed
Şanlı, E, , Kabaran S. Maternal obesity, maternal overnutrition and fetal programming: effects of epigenetic mechanisms on the development of metabolic disorders. Curr Genomics. 2019; 20, 419427.CrossRefGoogle ScholarPubMed
Taskinen, MR, Packard, CJ, Borén, J. Dietary fructose and the metabolic syndrome. Nutrients. 2019; 11, 1987.CrossRefGoogle ScholarPubMed
Mortera, RR, Bains, Y, Gugliucci, A. Fructose at the crossroads of the metabolic syndrome and obesity epidemics. Front Biosci (Landmark Ed). 2019; 24, 186211.Google Scholar
Salehi, B, Berkay Yılmaz, Y, Antika, G, et al. Insights on the use of α-lipoic acid for therapeutic purposes. Biomolecules. 2019; 9, 356.CrossRefGoogle ScholarPubMed
Akbari, M, Ostadmohammadi, V, Tabrizi, R, et al. The effects of alpha-lipoic acid supplementation on inflammatory markers among patients with metabolic syndrome and related disorders: a systematic review and meta-analysis of randomized controlled trials. Nutr Metab (Lond). 2018; 15, 39.CrossRefGoogle Scholar
Pershadsingh, HA. Alpha-lipoic acid: physiologic mechanisms and indications for the treatment of metabolic syndrome. Expert Opin Investig Drugs. 2007; 16, 291302.CrossRefGoogle ScholarPubMed
Kim, MS, Park, JY, Namkoong, C, et al. Anti-obesity effects of alpha-lipoic acid mediated by suppression of hypothalamic AMP-activated protein kinase. Nat Med. 2004; 10, 727733.CrossRefGoogle ScholarPubMed
Koga, T, Ishida, T, Takeda, T, et al. Restoration of dioxin-induced damage to fetal steroidogenesis and gonadotropin formation by maternal co-treatment with α-lipoic acid. PLoS One. 2012; 7, e40322.CrossRefGoogle ScholarPubMed
Kim, SM, Ha, JS, Han, AR, et al. Effects of α-lipoic acid on LPS-induced neuroinflammation and NLRP3 inflammasome activation through the regulation of BV-2 microglial cells activation. BMB Rep. 2019; 52, 613618.CrossRefGoogle ScholarPubMed
Ugrumov, MV, Saifetyarova, JY, Lavrentieva, AV, et al. Developing brain as an endocrine organ: secretion of dopamine. Mol Cell Endocrinol. 2012; 348, 7886.CrossRefGoogle ScholarPubMed
de Boo, HA, Harding, JE. The developmental origins of adult disease (Barker) hypothesis. Aust N Z J Obstet Gynaecol. 2006; 46, 414.CrossRefGoogle ScholarPubMed
Rabaglino, MB, Esmoriz, F, Vara-Messler, M, et al. Maternal dietary intake of lipoic acid during pregnancy and lactation influences metabolism and weight gain in the Wistar rat offspring. Revista Medicina. 2017; 77(Suppl 1), 80.Google Scholar
Monserrat-Mesquida, M, Quetglas-Llabrés, M, Capó, X, et al. Metabolic syndrome is associated with oxidative stress and proinflammatory state. Antioxidants (Basel). 2020; 9, 236.CrossRefGoogle ScholarPubMed
McMillen, IC, Adam, CL, Mühlhäusler, BS. Early origins of obesity: programming the appetite regulatory system. J Physiol. 2005; 565, 917.CrossRefGoogle ScholarPubMed
Andrade, N, Andrade, S, Silva, C, et al. Chronic consumption of the dietary polyphenol chrysin attenuates metabolic disease in fructose-fed rats. Eur J Nutr. 2020; 59, 151165.CrossRefGoogle ScholarPubMed
Felice, JI, Schurman, L, McCarthy, AD, et al. Effects of fructose-induced metabolic syndrome on rat skeletal cells and tissue, and their responses to metformin treatment. Diabetes Res Clin Pract. 2017; 126, 202213.CrossRefGoogle ScholarPubMed
Yahia, H, Hassan, A, El-Ansary, MR, et al. IL-6/STAT3 and adipokine modulation using tocilizumab in rats with fructose-induced metabolic syndrome. Naunyn Schmiedebergs Arch Pharmacol. 2020. doi: 10.1007/s00210-020-01940-z.CrossRefGoogle ScholarPubMed
Folch, J, Lees, M, Sloane Stanley, GH. A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem. 1957; 226, 497509.CrossRefGoogle ScholarPubMed
Garcia, CP, Lamarque, AL, Comba, A, et al. Synergistic anti-tumor effects of melatonin and PUFAs from walnuts in a murine mammary adenocarcinoma model. Nutrition. 2015; 31, 570577.CrossRefGoogle Scholar
Castro, MC, Massa, ML, Schinella, G, et al. Lipoic acid prevents liver metabolic changes induced by administration of a fructose-rich diet. Biochim Biophys Acta. 2013; 1830, 22262232.CrossRefGoogle ScholarPubMed
Johnson, PR, Hirsch, J. Cellularity of adipose depots in six strains of genetically obese mice. J Lipid Res. 1972; 13, 211.CrossRefGoogle ScholarPubMed
Chen, X, Zhong, Z, Xu, Z, et al. 2’,7’-dichlorodihydrofluorescein as a fluorescent probe for reactive oxygen species measurement: forty years of application and controversy. Free Radic Res. 2010; 44, 587604.CrossRefGoogle ScholarPubMed
Sedlak, J, Lindsay, RH. Estimation of total, protein-bound, and nonprotein sulfhydryl groups in tissue with Ellman’s reagent. Anal Biochem. 1968; 25, 192205.CrossRefGoogle ScholarPubMed
Katalinic, V, Modun, D, Music, I, et al. Gender differences in antioxidant capacity of rat tissues determined by 2,2’-azinobis (3-ethylbenzothiazoline 6-sulfonate; ABTS) and ferric reducing antioxidant power (FRAP) assays. Comp Biochem Physiol C Toxicol Pharmacol. 2005; 140, 4752.CrossRefGoogle ScholarPubMed
Schindelin, J, Arganda-Carreras, I, Frise, E, et al. Fiji: an open-source platform for biological-image analysis. Nat Methods. 2012; 9, 676682.CrossRefGoogle ScholarPubMed
Kačarević, ŽP, Grgić, A, Šnajder, D, et al. Different combinations of maternal and postnatal diet are reflected in changes of hepatic parenchyma and hepatic TNF-alpha expression in male rat offspring. Acta Histochem. 2017; 119, 719726.CrossRefGoogle ScholarPubMed
Guerrero-Romero, F, Simental-Mendía, LE, González-Ortiz, M, et al. The product of triglycerides and glucose, a simple measure of insulin sensitivity. Comparison with the euglycemic-hyperinsulinemic clamp. J Clin Endocrinol Metab. 2010; 95, 33473351.CrossRefGoogle ScholarPubMed
Kucukgoncu, S, Zhou, E, Lucas, KB, et al. Alpha-lipoic acid (ALA) as a supplementation for weight loss: results from a meta-analysis of randomized controlled trials. Obes Rev. 2017; 18, 594601.CrossRefGoogle ScholarPubMed
Namazi, N, Larijani, B, Azadbakht, L. Alpha-lipoic acid supplement in obesity treatment: a systematic review and meta-analysis of clinical trials. Clin Nutr. 2018; 37, 419428.CrossRefGoogle ScholarPubMed
Vajdi, M, Abbasalizad Farhangi, M. Alpha-lipoic acid supplementation significantly reduces the risk of obesity in an updated systematic review and dose response meta-analysis of randomised placebo-controlled clinical trials. Int J Clin Pract. 2020; 74, e13493.CrossRefGoogle Scholar
Wang, Y, Li, X, Guo, Y, et al. Alpha-lipoic acid increases energy expenditure by enhancing adenosine monophosphate-activated protein kinase-peroxisome proliferator-activated receptor-gamma coactivator-1alpha signaling in the skeletal muscle of aged mice. Metabolism. 2010; 59, 967976.CrossRefGoogle ScholarPubMed
Castro, MC, Villagarcía, HG, Massa, ML, et al. Alpha-lipoic acid and its protective role in fructose induced endocrine-metabolic disturbances. Food Funct. 2019; 10, 1625.CrossRefGoogle ScholarPubMed
Ide, T. Physiological activities of the combination of fish oil and α-lipoic acid affecting hepatic lipogenesis and parameters related to oxidative stress in rats. Eur J Nutr. 2018; 57, 15451561.CrossRefGoogle ScholarPubMed
Valdecantos, MP, Pérez-Matute, P, Prieto-Hontoria, P, et al. Impact of dietary lipoic acid supplementation on liver mitochondrial bioenergetics and oxidative status on normally fed Wistar rats. Int J Food Sci Nutr. 2019; 70, 834844.CrossRefGoogle ScholarPubMed
Zhu, Z, Cao, F, Li, X. Epigenetic programming and fetal metabolic programming. Front Endocrinol (Lausanne). 2019; 10, 764.CrossRefGoogle ScholarPubMed
Loh, K, Herzog, H, Shi, YC. Regulation of energy homeostasis by the NPY system. Trends Endocrinol Metab. 2015; 26, 125135.CrossRefGoogle ScholarPubMed
García, G, Gutiérrez-Lara, EJ, Centurión, D, et al. Fructose-induced insulin resistance as a model of neuropathic pain in rats. Neuroscience. 2019; 404, 233245.CrossRefGoogle ScholarPubMed
Kitagawa, A, Ohta, Y, Ohashi, K, et al. Effect of high fructose-induced metabolic syndrome on tissue vitamin E and lipid peroxide levels in rats. J Nutr Sci Vitaminol (Tokyo). 2020; 66, 200206.CrossRefGoogle ScholarPubMed
Castro, MC, Massa, ML, Del Zotto, H, et al. Rat liver uncoupling protein 2: changes induced by a fructose-rich diet. Life Sci. 2011; 89, 609614.CrossRefGoogle ScholarPubMed
Castro, MC, Massa, ML, Arbeláez, LG, et al. Fructose-induced inflammation, insulin resistance and oxidative stress: a liver pathological triad effectively disrupted by lipoic acid. Life Sci. 2015; 137, 16.CrossRefGoogle ScholarPubMed
Bursać, BN, Vasiljević, AD, Nestorović, NM, et al. High-fructose diet leads to visceral adiposity and hypothalamic leptin resistance in male rats--do glucocorticoids play a role. J Nutr Biochem. 2014; 25, 446455.CrossRefGoogle ScholarPubMed
Abdelkarem, HM, Fadda, LH, Hassan, AAG. Potential intervention of α- lipoic acid and carnitine on insulin sensitivity and anti-inflammatory cytokines levels in fructose-fed rats, a model of metabolic syndrome. J Diet Suppl. 2017; 14, 5464.CrossRefGoogle Scholar
Francini, F, Castro, MC, Gagliardino, JJ, et al. Regulation of liver glucokinase activity in rats with fructose-induced insulin resistance and impaired glucose and lipid metabolism. Can J Physiol Pharmacol. 2009; 87, 702710.CrossRefGoogle ScholarPubMed
Sadeghi, A, Beigy, M, Alizadeh, S, et al. Synergistic effects of Ad-libitum low-dose fructose drinking and low-dose streptozotocin treatment in Wistar rats: a mild model of type 2 diabetes. Acta Med Iran. 2017; 55, 304310.Google ScholarPubMed
Moseti, D, Regassa, A, Kim, WK. Molecular regulation of adipogenesis and potential anti-adipogenic bioactive molecules. Int J Mol Sci. 2016; 17, 124.CrossRefGoogle ScholarPubMed
Han, L, Shen, WJ, Bittner, S, et al. PPARs: regulators of metabolism and as therapeutic targets in cardiovascular disease. Part II: PPAR-β/δ and PPAR-γ. Future Cardiol. 2017; 13, 279296.CrossRefGoogle ScholarPubMed
Tandra, S, Yeh, MM, Brunt, EM, et al. Presence and significance of microvesicular steatosis in nonalcoholic fatty liver disease. J Hepatol. 2011; 55, 654659.CrossRefGoogle ScholarPubMed
Parente, E, Colannino, G, Picconi, O, et al. Safety of oral alpha-lipoic acid treatment in pregnant women: a retrospective observational study. Eur Rev Med Pharmacol Sci. 2017; 21, 42194227.Google ScholarPubMed
Supplementary material: Image

Rabaglino et al. supplementary material

Rabaglino et al. supplementary material 1

Download Rabaglino et al. supplementary material(Image)
Image 1.5 MB
Supplementary material: Image

Rabaglino et al. supplementary material

Rabaglino et al. supplementary material 2

Download Rabaglino et al. supplementary material(Image)
Image 595.9 KB
Supplementary material: File

Rabaglino et al. supplementary material

Rabaglino et al. supplementary material 3

Download Rabaglino et al. supplementary material(File)
File 13.5 KB