Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-14T00:23:24.395Z Has data issue: false hasContentIssue false

Sleep-disordered breathing in pregnancy: a developmental origin of offspring obesity?

Published online by Cambridge University Press:  19 May 2020

Sarah S. Farabi*
Affiliation:
Goldfarb School of Nursing, Office of Nursing Research, St. Louis, MO, USA Center for Human Nutrition, Washington University St. Louis School of Medicine, St. Louis, MO, USA
Linda A. Barbour
Affiliation:
Department of Medicine, Division of Endocrinology, Metabolism, and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO, USA Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
Teri L. Hernandez
Affiliation:
Department of Medicine, Division of Endocrinology, Metabolism, and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO, USA College of Nursing, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
*
Address for correspondence: Sarah S. Farabi, Goldfarb School of Nursing, Office of Nursing Research, Mailstop 90-36-697, 4483 Duncan Avenue, St. Louis, MO, USA. Email: Sarah.Farabi@barnesjeswishcollege.edu

Abstract

Sleep-disordered breathing (SDB) worsens over pregnancy, and obstructive sleep apnea is associated with serious maternal complications. Intrauterine exposures that provoke insulin resistance (IR), inflammation, or oxidative stress may have long-term offspring health consequences. In obesity, worsening maternal SDB appears to be an exposure that increases the risk for both small- or large-for-gestational-age (SGA, LGA, respectively), suggesting distinct outcomes linked to a common maternal phenotype. The aim of this paper is to systematically review and link data from both mechanistic rodent models and descriptive human studies to characterize the impact of maternal SDB on fetal development. A systematic review of the literature was conducted using PubMed, Embase, and CINAHL (01/2000–09/2019). Data from rodent (9 studies) and human models (48 studies, 5 meta-analyses) were included and reviewed using PRISMA guidelines. Evidence from rodent models suggests that intermittent maternal hypoxia results in mixed changes in birth weight (BW) followed by accelerated postnatal growth, while maternal sleep fragmentation results in normal BW followed by later metabolic derangement. Human studies support that maternal SDB is associated with both SGA and LGA, both of which may predispose offspring to later obesity. Evidence also suggests a link between SDB, inflammation, and oxidative stress that may impact maternal metabolism and/or placental function. SDB is common in pregnancy and affects fetal growth and development. Given that SDB has significant potential to adversely influence the intrauterine metabolic environment, larger, prospective studies in humans are urgently needed to fully elucidate the effects of this exposure on offspring metabolic risk.

Type
Review
Copyright
© Cambridge University Press and the International Society for Developmental Origins of Health and Disease 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ayrim, A, Keskin, EA, Ozol, D, Onaran, Y, Yiidirim, Z, Kafali, H. Influence of self-reported snoring and witnessed sleep apnea on gestational hypertension and fetal outcome in pregnancy. Arch Gynecol Obstet. 2011; 283(2), 195199.CrossRefGoogle ScholarPubMed
Dunietz, GL, Chervin, RD, O’Brien, LM. Sleep-disordered breathing during pregnancy: future implications for cardiovascular health. Obstet Gynecol Surv. 2014; 69(3), 164176.CrossRefGoogle ScholarPubMed
O’Brien, LM, Bullough, AS, Owusu, JT, et al. Pregnancy-onset habitual snoring, gestational hypertension, and preeclampsia: prospective cohort study. Am J Obstet Gynecol. 2012; 207(6), 487.e1–9.CrossRefGoogle ScholarPubMed
Bourjeily, G, Raker, CA, Chalhoub, M, Miller, MA. Pregnancy and fetal outcomes of symptoms of sleep-disordered breathing. Eur Respir J. 2010; 36(4), 849855.CrossRefGoogle ScholarPubMed
Connolly, G, Razak, AR, Hayanga, A, Russell, A, McKenna, P, McNicholas, WT. Inspiratory flow limitation during sleep in pre-eclampsia: comparison with normal pregnant and nonpregnant women. Eur Respir J. 2001; 18(4), 672676.CrossRefGoogle ScholarPubMed
Edwards, N, Blyton, DM, Kirjavainen, TT, Sullivan, CE. Hemodynamic responses to obstructive respiratory events during sleep are augmented in women with preeclampsia. Am J Hypertens. 2001; 14(11 Pt 1), 10901095.CrossRefGoogle ScholarPubMed
Franklin, KA, Holmgren, PA, Jonsson, F, Poromaa, N, Stenlund, H, Svanborg, E. Snoring, pregnancy-induced hypertension, and growth retardation of the fetus. Chest. 2000; 117(1), 137141.CrossRefGoogle ScholarPubMed
Reid, J, Skomro, R, Cotton, D, et al. Pregnant women with gestational hypertension may have a high frequency of sleep disordered breathing. Sleep. 2011; 34(8), 10331038.CrossRefGoogle ScholarPubMed
Chen, YH, Kang, JH, Lin, CC, Wang, IT, Keller, JJ, Lin, HC. Obstructive sleep apnea and the risk of adverse pregnancy outcomes. Am J Obstet Gynecol. 2012; 206(2), 136.e1–5.CrossRefGoogle ScholarPubMed
Bisson, M, Series, F, Giguere, Y, et al. Gestational diabetes mellitus and sleep-disordered breathing. Obstet Gynecol. 2014; 123(3), 634641.CrossRefGoogle ScholarPubMed
Facco, FL, Grobman, WA, Kramer, J, Ho, KH, Zee, PC. Self-Reported short sleep duration and frequent snoring in pregnancy: impact on glucose metabolism. Am J Obstet Gynecol. 2010; 203(2), 142.e1–5.CrossRefGoogle ScholarPubMed
Louis, JM, Auckley, D, Sokol, RJ, Mercer, BM. Maternal and neonatal morbidities associated with obstructive sleep apnea complicating pregnancy. Am J Obstet Gynecol. 2010; 202(3), 261 e261265.CrossRefGoogle ScholarPubMed
O’Brien, LM, Bullough, AS, Owusu, JT, et al. Snoring during pregnancy and delivery outcomes: a cohort study. Sleep. 2013; 36(11), 16251632.CrossRefGoogle ScholarPubMed
Louis, JM, Koch, MA, Reddy, UM, et al. Predictors of sleep-disordered breathing in pregnancy. Am J Obstet Gynecol. 2018; 218(5), 521.e1521.e12.CrossRefGoogle ScholarPubMed
Dempsey, JA, Veasey, SC, Morgan, BJ, O’Donnell, CP. Pathophysiology of sleep apnea. Physiol Rev. 2010; 90(1), 47112.CrossRefGoogle ScholarPubMed
Stoohs, RG, Gold, AR. Snoring and pathologic upper airway resistance syndromes. In Principles And Practice Of Sleep Medicine. (eds. Kryger, M, Roth, T, Dement, WC), 2017; pp. 10881101. Elsevier, Philadelphia, PA.CrossRefGoogle Scholar
Greenberg, HL, Lakticòvá, V, Scharf, SM. Obstructive sleep apnea: clinical features, evaluation, and principles of management. In Principles And Practice Of Sleep Medicine. (eds. Kryger, MH, Roth, T, Dement, WC), 2017; pp. 11101124. Elsevier, Philadelphia, PA.CrossRefGoogle Scholar
Epstein, LJ, Kristo, D, Strollo, PJ Jr, et al. Clinical guideline for the evaluation, management and long-term care of obstructive sleep apnea in adults. J Clin Sleep Med. 2009; 5(3), 263276.Google ScholarPubMed
Hernandez, TL, Ballard, RD, Weil, KM, et al. Effects of maintained weight loss on sleep dynamics and neck morphology in severely obese adults. Obesity (Silver Spring). 2009; 17(1), 8491.CrossRefGoogle ScholarPubMed
Pien, GW, Fife, D, Pack, AI, Nkwuo, JE, Schwab, RJ. Changes in symptoms of sleep-disordered breathing during pregnancy. Sleep. 2005; 28(10), 12991305.CrossRefGoogle ScholarPubMed
Izci Balserak, B. Sleep disordered breathing in pregnancy. Breathe (Sheff). 2015; 11(4), 268277.CrossRefGoogle ScholarPubMed
Defronzo, RA. Banting lecture. From the triumvirate to the ominous octet: a new paradigm for the treatment of type 2 diabetes mellitus. Diabetes. 2009; 58(4), 773795.CrossRefGoogle ScholarPubMed
Ye, J. Mechanisms of insulin resistance in obesity. Front Med. 2013; 7(1), 1424.CrossRefGoogle ScholarPubMed
Barbour, LA, Farabi, SS, Friedman, JE, et al. Postprandial triglycerides predict newborn fat more strongly than glucose in women with obesity in early pregnancy. Obesity (Silver Spring). 2018; 26(8), 13471356.CrossRefGoogle ScholarPubMed
Barbour, LA, McCurdy, CE, Hernandez, TL, Kirwan, JP, Catalano, PM, Friedman, JE. Cellular mechanisms for insulin resistance in normal pregnancy and gestational diabetes. Diabetes Care. 2007; 2(30 Suppl.), S112S119.CrossRefGoogle Scholar
Catalano, PM, Huston, L, Amini, SB, Kalhan, SC. Longitudinal changes in glucose metabolism during pregnancy in obese women with normal glucose tolerance and gestational diabetes mellitus. Am J Obstet Gynecol. 1999; 180(4), 903916.CrossRefGoogle ScholarPubMed
Barbour, LA, Friedman, JE, Hernandez, TL. Metabolic changes in normal and obese pregnancies and in gestational diabetes. In Diabetes & Obesity in Women: Adolescence, Pregnancy, and Menopause (4th Ed.). (eds. Reece, EA, Coustan, D), 2019s. Wolters Kluwer Health, Philadelphia, PA.Google Scholar
Catalano, PM, Shankar, K. Obesity and pregnancy: mechanisms of short term and long term adverse consequences for mother and child. BMJ. 2017; 356, j1.CrossRefGoogle ScholarPubMed
Hernandez, TL, Friedman, JE, Barbour, LA. Insulin resistance in pregnancy: implications for mother and offspring. In Insulin Resistance: Childhood Precursors of Adult Disease (2nd Ed.). (eds. Zeitler, PS, Nadeau, KL), 2020. Springer, Switzerland AG.Google Scholar
Aurora, RN, Punjabi, NM. Obstructive sleep apnoea and type 2 diabetes mellitus: a bidirectional association. Lancet Respir Med. 2013; 1(4), 329338.CrossRefGoogle ScholarPubMed
Fung, AM, Wilson, DL, Lappas, M, et al. Effects of maternal obstructive sleep apnoea on fetal growth: a prospective cohort study. PLoS One. 2013; 8(7), e68057.CrossRefGoogle ScholarPubMed
Polak, J, Shimoda, LA, Drager, LF, et al. Intermittent hypoxia impairs glucose homeostasis in C57BL6/J mice: partial improvement with cessation of the exposure. Sleep. 2013; 36(10), 14831490; 1490A–1490B.CrossRefGoogle ScholarPubMed
Louis, M, Punjabi, NM. Effects of acute intermittent hypoxia on glucose metabolism in awake healthy volunteers. J Appl Physiol (1985). 2009; 106(5), 15381544.CrossRefGoogle ScholarPubMed
Stamatakis, KA, Punjabi, NM. Effects of sleep fragmentation on glucose metabolism in normal subjects. Chest. 2010; 137(1), 95101.CrossRefGoogle ScholarPubMed
Collins, S, Surwit, RS. The beta-adrenergic receptors and the control of adipose tissue metabolism and thermogenesis. Recent Prog Horm Res. 2001; 56, 309328.CrossRefGoogle ScholarPubMed
Frayn, KN. Metabolic Regulation: A Human Perspective, 3rd edn, 2010. Wiley-Blackwell Pub., Chichester, UK; Malden, MA.Google Scholar
Kunos, G, Ishac, EJ, Gao, B, Jiang, L. Inverse regulation of hepatic alpha 1B- and beta 2-adrenergic receptors. Cellular mechanisms and physiological implications. Ann N Y Acad Sci. 1995; 757, 261271.CrossRefGoogle ScholarPubMed
Dunford, EC, Riddell, MC. The metabolic implications of glucocorticoids in a high-fat diet setting and the counter-effects of exercise. Metabolites. 2016; 6(4), 44.CrossRefGoogle Scholar
Briancon-Marjollet, A, Weiszenstein, M, Henri, M, Thomas, A, Godin-Ribuot, D, Polak, J. The impact of sleep disorders on glucose metabolism: endocrine and molecular mechanisms. Diabetol Metab Syndr. 2015; 7, 25.CrossRefGoogle ScholarPubMed
Tasali, E, Ip, MS. Obstructive sleep apnea and metabolic syndrome: alterations in glucose metabolism and inflammation. Proc Am Thorac Soc. 2008; 5(2), 207217.CrossRefGoogle ScholarPubMed
Challis, JR, Lockwood, CJ, Myatt, L, Norman, JE, Strauss, JF, 3rd, Petraglia, F. Inflammation and pregnancy. Reprod Sci. 2009; 16(2), 206215.CrossRefGoogle Scholar
Hanson, MA, Gluckman, PD. Early developmental conditioning of later health and disease: physiology or pathophysiology? Physiol Rev. 2014; 94(4), 10271076.CrossRefGoogle ScholarPubMed
Barker, DJ, Bagby, SP. Developmental antecedents of cardiovascular disease: a historical perspective. J Am Soc Nephrol. 2005; 16(9), 25372544.CrossRefGoogle ScholarPubMed
Catalano, PM, Farrell, K, Thomas, A, et al. Perinatal risk factors for childhood obesity and metabolic dysregulation. Am J Clin Nutr. 2009; 90(5), 13031313.CrossRefGoogle ScholarPubMed
Kapral, N, Miller, SE, Scharf, RJ, Gurka, MJ, DeBoer, MD. Associations between birthweight and overweight and obesity in school-age children. Pediatr Obes. 2017; doi: 10.1111/ijpo.12227.Google ScholarPubMed
Ogden, CL, Carroll, MD, Lawman, HG, et al. Trends in obesity prevalence among children and adolescents in the United States, 1988–1994 through 2013–2014. JAMA. 2016; 315(21), 22922299.CrossRefGoogle ScholarPubMed
NIH National Heart L, Blood Institute. Study Quality Assessment Tools. https://www.nhlbi.nih.gov/health-topics/study-quality-assessment-tools (accessed January 15, 2019).Google Scholar
Hooijmans, CR, Rovers, MM, de Vries, RB, Leenaars, M, Ritskes-Hoitinga, M, Langendam, MW. SYRCLE’s risk of bias tool for animal studies. BMC Med Res Methodol. 2014; 14, 43.CrossRefGoogle ScholarPubMed
Khalyfa, A, Cortese, R, Qiao, Z, et al. Late gestational intermittent hypoxia induces metabolic and epigenetic changes in male adult offspring mice. J Physiol. 2017; 595(8), 25512568.CrossRefGoogle ScholarPubMed
McDonald, FB, Dempsey, EM, O’Halloran, KD. Effects of gestational and postnatal exposure to chronic intermittent hypoxia on diaphragm muscle contractile function in the rat. Front Physiol. 2016; 7, 276.CrossRefGoogle ScholarPubMed
Gozal, D, Reeves, SR, Row, BW, Neville, JJ, Guo, SZ, Lipton, AJ. Respiratory effects of gestational intermittent hypoxia in the developing rat. Am J Respir Crit Care Med. 2003; 167(11), 15401547.CrossRefGoogle ScholarPubMed
Iqbal, W, Ciriello, J. Effect of maternal chronic intermittent hypoxia during gestation on offspring growth in the rat. Am J Obstet Gynecol. 2013; 209(6), 564.e1–9.CrossRefGoogle ScholarPubMed
Ong, KK, Ahmed, ML, Emmett, PM, Preece, MA, Dunger, DB. Association between postnatal catch-up growth and obesity in childhood: prospective cohort study. BMJ. 2000; 320(7240), 967971.CrossRefGoogle ScholarPubMed
Cortese, R, Khalyfa, A, Bao, R, Andrade, J, Gozal, D. Epigenomic profiling in visceral white adipose tissue of offspring of mice exposed to late gestational sleep fragmentation. Int J Obes (Lond). 2015; 39(7), 11351142.CrossRefGoogle ScholarPubMed
Mutskov, V, Khalyfa, A, Wang, Y, Carreras, A, Nobrega, MA, Gozal, D. Early-life physical activity reverses metabolic and Foxo1 epigenetic misregulation induced by gestational sleep disturbance. Am J Physiol Regul Integr Comp Physiol. 2015; 308(5), R419R430.CrossRefGoogle ScholarPubMed
Khalyfa, A, Mutskov, V, Carreras, A, Khalyfa, AA, Hakim, F, Gozal, D. Sleep fragmentation during late gestation induces metabolic perturbations and epigenetic changes in adiponectin gene expression in male adult offspring mice. Diabetes. 2014; 63(10), 32303241.CrossRefGoogle ScholarPubMed
Khalyfa, A, Carreras, A, Almendros, I, Hakim, F, Gozal, D. Sex dimorphism in late gestational sleep fragmentation and metabolic dysfunction in offspring mice. Sleep. 2015; 38(4), 545557.CrossRefGoogle ScholarPubMed
Sander, K. Integrated physiology and systems biology of PPARα. Mol Metab. 2014; 3(4), 354371.Google Scholar
Trzepizur, W, Khalyfa, A, Qiao, Z, Popko, B, Gozal, D. Integrated stress response activation by sleep fragmentation during late gestation in mice leads to emergence of adverse metabolic phenotype in offspring. Metabolism. 2017; 69, 188198.CrossRefGoogle ScholarPubMed
Hales, CN, Barker, DJ. Type 2 (non-insulin-dependent) diabetes mellitus: the thrifty phenotype hypothesis. 1992. Int J Epidemiol. 2013; 42(5), 12151222.CrossRefGoogle ScholarPubMed
Ding, XX, Wu, YL, Xu, SJ, et al. A systematic review and quantitative assessment of sleep-disordered breathing during pregnancy and perinatal outcomes. Sleep Breath. 2014; 18(4), 703713.CrossRefGoogle ScholarPubMed
Warland, J, Dorrian, J, Morrison, JL, O’Brien, LM. Maternal sleep during pregnancy and poor fetal outcomes: a scoping review of the literature with meta-analysis. Sleep Med Rev. 2018; 41, 197219.CrossRefGoogle ScholarPubMed
Brown, NT, Turner, JM, Kumar, S. The intrapartum and perinatal risks of sleep-disordered breathing in pregnancy: a systematic review and metaanalysis. Am J Obstet Gynecol. 2018; 219(2), 147161.e1.CrossRefGoogle ScholarPubMed
Micheli, K, Komninos, I, Bagkeris, E, et al. Sleep patterns in late pregnancy and risk of preterm birth and fetal growth restriction. Epidemiology. 2011; 22(5), 738744.CrossRefGoogle ScholarPubMed
Pamidi, S, Marc, I, Simoneau, G, et al. Maternal sleep-disordered breathing and the risk of delivering small for gestational age infants: a prospective cohort study. Thorax. 2016; 71(8), 719725.CrossRefGoogle ScholarPubMed
Louis, JM, Mogos, MF, Salemi, JL, Redline, S, Salihu, HM. Obstructive sleep apnea and severe maternal-infant morbidity/mortality in the United States, 1998–2009. Sleep. 2014; 37(5), 843849.CrossRefGoogle ScholarPubMed
Kneitel, AW, Treadwell, MC, O’Brien, LM. Effects of maternal obstructive sleep apnea on fetal growth: a case-control study. J Perinatol. 2018; 38(8), 982988.CrossRefGoogle ScholarPubMed
Miyagawa, S, Emori, Y, Kawano, A, Sakurai, S, Tanigawa, T. Relationship between sleep-disordered breathing and perinatal outcome in pregnant women. J Jpn Acad Midwifery. 2011; 25(1), 512.CrossRefGoogle Scholar
Facco, FL, Ouyang, DW, Zee, PC, et al. Implications of sleep-disordered breathing in pregnancy. Am J Obstet Gynecol. 2014; 210(6), 559.e1–6.CrossRefGoogle ScholarPubMed
Ko, HS, Kim, MY, Kim, YH, et al. Obstructive sleep apnea screening and perinatal outcomes in Korean pregnant women. Arch Gynecol Obstet. 2013; 287(3), 429433.CrossRefGoogle ScholarPubMed
Olivarez, SA, Ferres, M, Antony, K, et al. Obstructive sleep apnea screening in pregnancy, perinatal outcomes, and impact of maternal obesity. Am J Perinatol. 2011; 28(8), 651658.CrossRefGoogle ScholarPubMed
Perez-Chada, D, Videla, AJ, O’Flaherty, ME, et al. Snoring, witnessed sleep apnoeas and pregnancy-induced hypertension. Acta Obstet Gynecol Scand. 2007; 86(7), 788792.CrossRefGoogle ScholarPubMed
Ravishankar, S, Bourjeily, G, Lambert-Messerlian, G, He, M, De Paepe, ME, Gundogan, F. Evidence of placental hypoxia in maternal sleep disordered breathing. Pediatr Dev Pathol. 2015; 18(5), 380386.CrossRefGoogle ScholarPubMed
Sahin, FK, Koken, G, Cosar, E, et al. Obstructive sleep apnea in pregnancy and fetal outcome. Int J Gynaecol Obstet. 2008; 100(2), 141146.CrossRefGoogle ScholarPubMed
Sarberg, M, Svanborg, E, Wirehn, AB, Josefsson, A. Snoring during pregnancy and its relation to sleepiness and pregnancy outcome – a prospective study. BMC Pregnancy Childbirth. 2014; 14, 15.CrossRefGoogle ScholarPubMed
Spence, DL, Allen, RC, Lutgendorf, MA, Gary, VR, Richard, JD, Gonzalez, SC. Association of obstructive sleep apnea with adverse pregnancy-related outcomes in military hospitals. Eur J Obstet Gynecol Reprod Biol. 2017; 210, 166172.CrossRefGoogle ScholarPubMed
Tauman, R, Sivan, Y, Katsav, S, Greenfeld, M, Many, A. Maternal snoring during pregnancy is not associated with fetal growth restriction. J Matern Fetal Neonatal Med. 2012; 25(8), 12831286.CrossRefGoogle Scholar
Yin, TT, Williams, N, Burton, C, et al. Hypertension, fetal growth restriction and obstructive sleep apnoea in pregnancy. Eur J Obstet Gynecol Reprod Biol. 2008; 141(1), 3538.CrossRefGoogle ScholarPubMed
Telerant, A, Dunietz, GL, Many, A, Tauman, R. Mild maternal obstructive sleep apnea in non-obese pregnant women and accelerated fetal growth. Sci Rep. 2018; 8(1), 10768.CrossRefGoogle ScholarPubMed
Ge, X, Tao, F, Huang, K, et al. Maternal snoring may predict adverse pregnancy outcomes: a cohort study in China. PLoS One. 2016; 11(2), e0148732.CrossRefGoogle ScholarPubMed
Okun, ML, O’Brien, LM. Concurrent insomnia and habitual snoring are associated with adverse pregnancy outcomes. Sleep Med. 2018; 46, 1219.CrossRefGoogle ScholarPubMed
Pamidi, S, Pinto, LM, Marc, I, Benedetti, A, Schwartzman, K, Kimoff, RJ. Maternal sleep-disordered breathing and adverse pregnancy outcomes: a systematic review and metaanalysis. Am J Obstet Gynecol. 2014; 210(1), 52.e51–52.e14.CrossRefGoogle ScholarPubMed
Li, L, Zhao, K, Hua, J, Li, S. Association between sleep-disordered breathing during pregnancy and maternal and fetal outcomes: an updated systematic review and meta-analysis. Front Neurol. 2018; 9, 91.CrossRefGoogle ScholarPubMed
Owusu, JT, Anderson, FJ, Coleman, J, et al. Association of maternal sleep practices with pre-eclampsia, low birth weight, and stillbirth among Ghanaian women. Int J Gynaecol Obstet. 2013; 121(3), 261265.CrossRefGoogle ScholarPubMed
Pien, GW, Pack, AI, Jackson, N, Maislin, G, Macones, GA, Schwab, RJ. Risk factors for sleep-disordered breathing in pregnancy. Thorax. 2014; 69(4), 371377.CrossRefGoogle ScholarPubMed
Sharma, SK, Nehra, A, Sinha, S, et al. Sleep disorders in pregnancy and their association with pregnancy outcomes: a prospective observational study. Sleep Breath. 2016; 20(1), 8793.CrossRefGoogle ScholarPubMed
Louis, J, Auckley, D, Miladinovic, B, et al. Perinatal outcomes associated with obstructive sleep apnea in obese pregnant women. Obstet Gynecol. 2012; 120(5), 10851092.CrossRefGoogle ScholarPubMed
Higgins, N, Leong, E, Park, CS, Facco, FL, McCarthy, RJ, Wong, CA. The Berlin questionnaire for assessment of sleep disordered breathing risk in parturients and non-pregnant women. Int J Obstet Anesth. 2011; 20(1), 2225.CrossRefGoogle ScholarPubMed
Ugur, MG, Boynukalin, K, Atak, Z, Ustuner, I, Atakan, R, Baykal, C. Sleep disturbances in pregnant patients and the relation to obstetric outcome. Clin Exp Obstet Gynecol. 2012; 39(2), 214217.Google ScholarPubMed
Bassan, H, Uliel-Sibony, S, Katsav, S, Farber, M, Tauman, R. Maternal sleep disordered breathing and neonatal outcome. Isr Med Assoc J. 2016; 18(1), 4548.Google ScholarPubMed
Guilleminault, C, Querra-Salva, M, Chowdhuri, S, Poyares, D. Normal pregnancy, daytime sleeping, snoring and blood pressure. Sleep Med. 2000; 1(4), 289297.CrossRefGoogle ScholarPubMed
Leung, PL, Hui, DS, Leung, TN, Yuen, PM, Lau, TK. Sleep disturbances in Chinese pregnant women. BJOG. 2005; 112(11), 15681571.CrossRefGoogle ScholarPubMed
Bin, YS, Cistulli, PA, Ford, JB. Population-based study of sleep apnea in pregnancy and maternal and infant outcomes. J Clin Sleep Med. 2016; 12(6), 871877.CrossRefGoogle ScholarPubMed
Howe, LD, Signal, TL, Paine, SJ, et al. Self-reported sleep in late pregnancy in relation to birth size and fetal distress: the E Moe, Mama prospective cohort study. BMJ Open. 2015; 5(10), e008910.CrossRefGoogle Scholar
Farabi, SS, Barbour, LA, Heiss, K, Hirsch, NM, Dunn, E, Hernandez, TL. Obstructive sleep apnea is associated with altered glycemic patterns in pregnant women with obesity. J Clin Endocrinol Metab. 2019; doi: 10.1210/jc.2019-00159.CrossRefGoogle ScholarPubMed
Olivarez, SA, Maheshwari, B, McCarthy, M, et al. Prospective trial on obstructive sleep apnea in pregnancy and fetal heart rate monitoring. Am J Obstet Gynecol. 2010; 202(6), 552.e1–7.CrossRefGoogle ScholarPubMed
Koken, G, Sahin, FK, Cosar, E, et al. Oxidative stress markers in pregnant women who snore and fetal outcome: a case control study. Acta Obstet Gynecol Scand. 2007; 86(11), 13171321.CrossRefGoogle ScholarPubMed
Tauman, R, Many, A, Deutsch, V, et al. Maternal snoring during pregnancy is associated with enhanced fetal erythropoiesis – a preliminary study. Sleep Med. 2011; 12(5), 518522.CrossRefGoogle ScholarPubMed
Khan, N, Lambert-Messerlian, G, Monteiro, JF, et al. Oxidative and carbonyl stress in pregnant women with obstructive sleep apnea. Sleep Breath. 2017; doi: 10.1007/s11325-017-1475-8.Google ScholarPubMed
Chen, L, Chen, R, Wang, H, Liang, F. Mechanisms linking inflammation to insulin resistance. Int J Endocrinol. 2015; 2015, 508409.CrossRefGoogle ScholarPubMed
Khodabandehloo, H, Gorgani-Firuzjaee, S, Panahi, G, Meshkani, R. Molecular and cellular mechanisms linking inflammation to insulin resistance and beta-cell dysfunction. Transl Res. 2016; 167(1), 228256.CrossRefGoogle ScholarPubMed
Bourjeily, G, Curran, P, Butterfield, K, Maredia, H, Carpenter, M, Lambert-Messerlian, G. Placenta-secreted circulating markers in pregnant women with obstructive sleep apnea. J Perinat Med. 2015; 43(1), 8187.CrossRefGoogle ScholarPubMed
Bourjeily, G, Butterfield, K, Curran, P, Lambert-Messerlian, G. Obstructive sleep apnea is associated with alterations in markers of fetoplacental wellbeing. J Matern Fetal Neonatal Med. 2015; 28(3), 262266.CrossRefGoogle ScholarPubMed
Salameh, M, Lee, J, Palomaki, G, et al. Snoring and markers of fetal and placental wellbeing. Clin Chim Acta. 2018; 485, 139143.CrossRefGoogle ScholarPubMed
Kidron, D, Bar-Lev, Y, Tsarfaty, I, Ariel, M, Tauman, R. The effect of maternal obstructive sleep apnea on the placenta. Sleep. 2019; doi: 10.1093/sleep/zsz072.CrossRefGoogle ScholarPubMed
Salihu, HM, King, L, Patel, P, et al. Association between maternal symptoms of sleep disordered breathing and fetal telomere length. Sleep. 2015; 38(4), 559566.CrossRefGoogle ScholarPubMed
D’Mello, MJ, Ross, SA, Briel, M, Anand, SS, Gerstein, H, Pare, G. Association between shortened leukocyte telomere length and cardiometabolic outcomes: systematic review and meta-analysis. Circ Cardiovasc Genet. 2015; 8(1), 8290.CrossRefGoogle ScholarPubMed
Tauman, R, Zuk, L, Uliel-Sibony, S, et al. The effect of maternal sleep-disordered breathing on the infant’s neurodevelopment. Am J Obstet Gynecol. 2015; 212(5), 656.e1–7.CrossRefGoogle ScholarPubMed
Eriksson, JG, Kajantie, E, Osmond, C, Thornburg, K, Barker, DJ. Boys live dangerously in the womb. Am J Hum Biol. 2010; 22(3), 330335.CrossRefGoogle ScholarPubMed
Barbour, LA, Hernandez, TL, Reynolds, RM, et al. Striking differences in estimates of infant adiposity by new and old DXA software, PEAPOD and skin-folds at 2 weeks and 1 year of life. Pediatr Obes. 2016; 11(4), 264271.CrossRefGoogle ScholarPubMed
Supplementary material: File

Farabi et al. supplementary material

Table S1

Download Farabi et al. supplementary material(File)
File 17.6 KB