Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-26T07:04:43.353Z Has data issue: false hasContentIssue false

Circulating microRNAs overexpressed in macrosomia: an experimental and bioinformatic approach

Published online by Cambridge University Press:  26 May 2020

Alejandra Ortiz-Dosal
Affiliation:
Molecular Biology Division, Instituto Potosino de Investigación Científica y Tecnológica, San Luis Potosí, S.L.P. México Current address: Doctorado Institucional en Ingeniería y Ciencia de Materiales, Coordinación para la Innovación y la Aplicación de la Ciencia y la Tecnología, San Luis Potosí, México
Elvira del Carmen Arellanes-Licea
Affiliation:
Molecular Biology Division, Instituto Potosino de Investigación Científica y Tecnológica, San Luis Potosí, S.L.P. México
Patricia Rodil-García
Affiliation:
Molecular Biology Division, Instituto Potosino de Investigación Científica y Tecnológica, San Luis Potosí, S.L.P. México
Luis A. Salazar-Olivo*
Affiliation:
Molecular Biology Division, Instituto Potosino de Investigación Científica y Tecnológica, San Luis Potosí, S.L.P. México
*
Address for correspondence: Luis A. Salazar-Olivo, Camino a la Presa San José 2055, Lomas 4a secc., San Luis Potosí, SLP, 78216, México. Email: olivo@ipicyt.edu.mx.

Abstract

Low birth weight (LBW) and macrosomia have been associated with later-in-life metabolic alterations. The aim of this study was to elucidate whether the expression levels of circulating microRNAs (c-miRNAs) associated with adult metabolic diseases are also dysregulated in newborns with LBW or macrosomia. The expression levels of five microRNAs (miRNAs) associated with metabolic diseases were quantified in dried blood spots of newborns with adequate birth weight, LBW and macrosomia by stem-loop real-time polymerase chain reaction. miR-29a-5p, miR-126-3p, miR-221-3p, and miR-486-5p were significantly overexpressed in newborns with macrosomia and showed no significant change in the LBW group compared to normal weight controls. miR-320a showed no statistical difference among groups. We predicted the putative target genes and pathways of the overexpressed miRNAs with bioinformatic tools. Bioinformatic analyses of overexpressed miRNAs predicted target genes involved in carbohydrate metabolism, participate in FoxO and PI3K/Akt signaling pathways, and are associated with diabetes, obesity, and cardiovascular diseases. The overexpression of circulating miR-29a-5p, miR-126-3p, miR-221-3p, and miR-486-5p may explain the increased risk of obesity and diabetes associated with macrosomia. The use of dried blood spots from newborn screening cards to quantify miRNAs expression levels could be an early and minimally invasive predictive tool for these metabolic alterations.

Type
Original Article
Copyright
© Cambridge University Press and the International Society for Developmental Origins of Health and Disease 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andersen, CL, Jensen, JL, Ørntoft, TF.Normalization of real-time quantitative reverse transcription-PCR data: A model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res. 2004; 64, 52455250.CrossRefGoogle ScholarPubMed
Auguet, T, Aragonés, G, Berlanga, A, et al.miR-33a/miR-33b* and miR-122 as possible contributors to hepatic lipid metabolism in obese women with nonalcoholic fatty liver disease. Int J Mol Sci. 2016; 17, E1620.CrossRefGoogle Scholar
Balbus, JM, Barouki, R, Birnbaum, LS, et al.Early-life prevention of non-communicable diseases. Lancet. 2013; 381.CrossRefGoogle ScholarPubMed
Brown, BW, Brauner, C, Chen, A, et al. STPlan v4.5v. 2010. Calculations for sample size and related problems. The University of Texas MD Anderson Cancer Center. Department of Biomathematics, Houston, TX, USA. Freely available at: https://biostatistics.mdanderson.org/SoftwareDownload/SingleSoftware/Index/41.Google Scholar
Bustin, SA, Benes, V, Garson, JA, et al.The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem. 2009; 55(4), 611622.CrossRefGoogle ScholarPubMed
Carreras-Badosa, G, Bonmatí, A, Ortega, FJ, et al.Altered circulating miRNA expression profile in pregestational and gestational obesity. J Clin Endocrinol Metab. 2015; 100, E1446E1456.CrossRefGoogle ScholarPubMed
Carreras-Badosa, G, Bonmatí, A, Ortega, FJ, et al.Dysregulation of placental miRNA in maternal obesity is associated with pre- and postnatal growth. J Clin Endocrinol Metab. 2017; 102, 25842594.CrossRefGoogle ScholarPubMed
Chen, C, Ridzon, DA, Broomer, AJ, et al.Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res. 2005; 33, e179.CrossRefGoogle ScholarPubMed
Chen, H, Liang, J, Zhang, K, et al.Secreted microRNAs: A new form of intercellular communication. Trends Cell Biol. 2012; 22, 125132.CrossRefGoogle ScholarPubMed
Chiavaroli, V, Derraik, JGB, Hofman, PL, et al.Born large for gestational age: Bigger is not always better. J Pediatr. 2016; 170, 307311.CrossRefGoogle Scholar
Collares, CVA, Evangelista, AF, Xavier, DJ, et al.Identifying common and specific microRNAs expressed in peripheral blood mononuclear cell of type 1, type 2 and gestational diabetes mellitus patients. BMC Res Notes. 2013; 6, 491.CrossRefGoogle ScholarPubMed
Cui, X, You, L, Zhu, L, et al.Change in circulating microRNA profile of obese children indicates future risk of adult diabetes. Metabolism. 2018; 78, 95105.CrossRefGoogle ScholarPubMed
Czimmerer, Z, Hulvely, J, Simandi, Z, et al.A versatile method to design stem-loop primer-based quantitative PCR assays for detecting small regulatory RNA molecules. PLoS ONE. 2013; 8, e55168.CrossRefGoogle ScholarPubMed
Findeisen, HM, Gizard, F, Zhao, Y, et al.Epigenetic regulation of vascular smooth muscle cell proliferation and neointima formation by histone deacetylase inhibition. Arterioscler Thromb Vasc Biol. 2011; 31, 851860.CrossRefGoogle ScholarPubMed
Freedman, JE, Gerstein, M, Mick, E, et al.Diverse human extracellular RNAs are widely detected in human plasma. Nat Commun. 2016; 7, 11106.CrossRefGoogle ScholarPubMed
Ge, Q, Zhu, Y, Hailing, L, et al.Differential expression of circulating miRNAs in maternal plasma in pregnancies with fetal macrosomia. Int J Mol Med. 2015; 35, 8191.CrossRefGoogle ScholarPubMed
Geserick, M, Vogel, M, Gausche, R, et al.Acceleration of BMI in early childhood and risk of sustained obesity. N Engl J Med. 2018; 379, 13031312.CrossRefGoogle ScholarPubMed
Gulyaeva, LF and Kushlinskly, NE.Regulatory mechanisms of microRNA expression. J Transl Med. 2016; 14, 143.CrossRefGoogle ScholarPubMed
Hanson, MA, Gluckman, PD.Developmental origins of health and disease - Global public health implications. Best Practice and Research Clinical Obstetrics and Gynecology. 2015; 24, 31.Google Scholar
Ie Sage, C, Nagel, R, Egan, DA, et al.Regulation of the p27 (Kip1) tumor suppressor by miR-221 and miR-222 promotes cancer cell proliferation. EMBO J. 2007; 26, 36993708.CrossRefGoogle Scholar
Kalyan, A, Carneiro, B, Chandra, S, et al.Nodal signaling as a developmental therapeutics target in oncology. Mol Cancer Ther. 2017; 16, 787792.CrossRefGoogle Scholar
Kappil, M, Chen, J.Environmental exposures in utero and microRNA. Curr Opin Pediatr. 2014; 26, 243245.CrossRefGoogle ScholarPubMed
Karolina, DS, Tanvintharan, S, Armugam, A, et al.Circulating miRNA profiles in patients with metabolic syndrome. J Clin Endocrinol Metab. 2012; 97, E2271E2276.CrossRefGoogle ScholarPubMed
Kingston, ER, Bartel, DP.Global analyses of the dynamics of mammalian microRNA metabolism. Genome Res. 2019; 29, 17771790.CrossRefGoogle ScholarPubMed
Kristensen, MM, Davidsen, PK, Vigelsø, A, et al.miRNAs in human subcutaneous adipose tissue: Effects of weight loss induced by hypocaloric diet and exercise. Obesity (Silver Spring). 2017; 25(3), 572580.CrossRefGoogle ScholarPubMed
Kozomara, A, Griffiths-Jones, S.miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res. 2014; 42, D68D73.CrossRefGoogle ScholarPubMed
Livak, KJ, Schmittgen, TD.Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCt method. Methods. 2001; 25, 402408.CrossRefGoogle Scholar
Marshall, CB, Mays, DJ, Beeler, JS, et al.P73 is required for multiciliogenesis and regulates the Foxj1-associated gene network. Cell Reports. 2016; 14, 22892300.CrossRefGoogle ScholarPubMed
McGregor, R, Choi, MS.MicroRNAs in the regulation of adipogenesis and obesity. Curr Mol Med. 2011; 11, 304316.CrossRefGoogle ScholarPubMed
Nuñez-Lopez, YO, Garufi, G, Seyhan, AA.Altered levels of circulating cytokines and microRNAs in lean and obese individuals with prediabetes and type 2 diabetes. Mol Biosyst. 2016; 13, 106121.CrossRefGoogle ScholarPubMed
Ortega, FJ, Mercader, JM, Catalán, V, et al.Targeting the circulating microRNA signature of obesity. Clin Chem. 2013; 59, 781792.CrossRefGoogle ScholarPubMed
Peng, J, Li, Q, Li, K, et al.Quercetin improves glucose and lipid metabolism of diabetic rats. Involvement of Akt Signaling and SIRT 1. J Diabet Res. 2017; 2017. Art 3417306.CrossRefGoogle Scholar
Prats-Puig, A, Ortega, FJ, Mercader, JM, et al.Changes in circulating microRNAs are associated with childhood obesity. J Clin Endocrinol Metab. 2013; 98, E1655E1660.CrossRefGoogle ScholarPubMed
Rodil-Garcia, P, Arellanes-Licea, EC, Montoya-Contreras, A, et al.Analysis of MicroRNA expression in newborns with differential birth weight using newborn screening cards. Int J Mol Sci. 2017; 18, 2552.CrossRefGoogle ScholarPubMed
Salahuddin, M, Pérez, A, Ranjit, N, et al.Predictors of severe obesity in low-income, predominantly Hispanic/Latino children: The Texas childhood obesity research demonstration study. Prev Chronic Dis. 2017; 14, 170129.CrossRefGoogle ScholarPubMed
Seyhan, AA.MicroRNAs with different functions and roles in disease development and as potential biomarkers of diabetes: progress and challenges. Mol BioSyst. 2015; 11, 12171234.CrossRefGoogle ScholarPubMed
Shah, R, Murthy, V, Pacold, M, et al.Extracellular RNAs are associated with insulin resistance and metabolic phenotypes. Diabetes Care. 2017; 40, 546553.CrossRefGoogle ScholarPubMed
Shu, J, Chiang, K, Zempleni, J, et al.Computational characterization of exogenous microRNAs that can be transferred into human circulation. PLoS One. 2015; 10, e0140587.CrossRefGoogle ScholarPubMed
Silva, DCPD, Carneiro, FD, Almeida, KC, et al.Role of miRNAs on the pathophysiology of cardiovascular diseases. Arq Bras Cardiol. 2018; 111, 738746.Google ScholarPubMed
Thompson, MD, Cismowski, MJ, Serpico, M, et al.Elevation of circulating microRNA levels in obese children compared to healthy controls. Clin Obes. 2017; 7, 216221.CrossRefGoogle ScholarPubMed
Tokar, T, Pastrello, C, Rossos, AEM, et al.miRDip 4.1 - integrative database of human microRNA target predictions. Nucleic Acid Res. 2018; 46, D360D370. http://ophid.utoronto.ca/mirDIP/.CrossRefGoogle ScholarPubMed
Tonge, DP, Gant, TW.What is normal? Next generation sequencing-driven analysis of the human circulating miRNome. BMC Molecular Biol. 2016; 17, 4.CrossRefGoogle Scholar
Tzivion, G, Dobson, M, Ramakrishnan, G.FoxO transcription factors; regulation by AKT and 14-3-3 proteins. Biochim Biophys Acta. 2011; 1813, 19381945.CrossRefGoogle ScholarPubMed
Vandesompele, J, De Preter, K, Pattyn, F, et al.Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 2002; 3, research0034.1research0034.11.CrossRefGoogle ScholarPubMed
Varkonyi-Gasic, E, Wu, R, Wood, M, et al.Protocol: A highly sensitive RT-PCR method for detection and quantification of microRNAs. Plant Methods. 2007; 3, 12.CrossRefGoogle ScholarPubMed
Vlachos, IS, Zagganas, K, Paraskevopoulou, MD, et al.DIANA-miRPath v3.0: deciphering microRNA function with experimental support. Nucleic Acids Res. 2015; 43, W460W466.CrossRefGoogle ScholarPubMed
Wander, PL, Boyko, EJ, Hevner, K, et al.Circulating early- and mid-pregnancy microRNAs and risk of gestational diabetes. Diabetes Res Clin Pract. 2017; 132, 19.CrossRefGoogle ScholarPubMed
Wang, J, Samuels, DC, Zhao, S, et al.Current research on non-coding ribonucleic acid (RNA). Genes. 2017; 8, 366.CrossRefGoogle Scholar
Wang, J, Vasaikar, S, Shi, Z, et al.Web Gestalt 2017: a more comprehensive, powerful, flexible and interactive gene set enrichment analysis toolkit. Nucleic Acids Res. 2017; 45, w130w137.CrossRefGoogle Scholar
Williams, MD, Mitchell, GM.MicroRNAs in insulin resistance and obesity. Exp Diabetes Res. 2012; 2012, 484696.CrossRefGoogle ScholarPubMed
World Health Organization. Child Growth Standards. 2014. http://www.who.int/childgrowth/standards/weight_for_age_field/en/.Google Scholar
Xie, H, Lim, B, Lodish, HF.MicroRNAs induced during adipogenesis that accelerate fat cell development are downregulated in obesity. Diabetes. 2009; 58, 10501057.CrossRefGoogle ScholarPubMed
Zampetaki, A, Kiechl, S, Drozdov, I, et al.Plasma microRNA profiling reveals loss of endothelial miR-126 and other microRNAs in type 2 diabetes. Circ Res. 2010; 107, 810817.CrossRefGoogle ScholarPubMed
Zhu, H, Leung, SW.Identification of microRNA biomarkers in type 2 diabetes: a meta-analysis of controlled profiling studies. Diabetologia. 2015; 58, 900911.CrossRefGoogle ScholarPubMed
Supplementary material: PDF

Ortiz-Dosal et al. supplementary material

Ortiz-Dosal et al. supplementary material

Download Ortiz-Dosal et al. supplementary material(PDF)
PDF 1.1 MB