Article contents
Effect of vitamin D deficiency during pregnancy on offspring bone structure, composition and quality in later life
Published online by Cambridge University Press: 26 July 2012
Abstract
During foetal development, calcium requirements are met as a consequence of maternal adaptations independent of vitamin D status. In contrast, after birth, dependency on vitamin D appears necessary for calcium metabolism and skeletal health. We used a rodent model (Sprague-Dawley rats), to determine if maternal vitamin D deficiency during pregnancy had a deleterious effect on bone structure at birth. Vitamin D deplete females were maintained under deplete conditions until birth of the pups, whereupon all dams were fed a vitamin D replete diet. Offspring were harvested at birth, and 140 days of age. Bones were analyzed using micro-computed tomography and strength tested to study differences in bone structure, density and strength and subjected to elemental analysis using plasma mass spectrometry to determine strontium, barium and calcium contents. Offspring from deplete mothers displayed altered trabecular parameters in the femur at birth and 140 days of age. In addition, at 140 days of age there was evidence of premature mineralization of the secondary ossification centre of the femoral head. Elemental analysis showed increased strontium uptake in the femur of the developmentally vitamin D-deficient offspring. Vitamin D depletion during development in the offspring may have a long-lasting effect, despite repletion of vitamin D from birth. This may have consequences for human health given the low vitamin D levels seen during pregnancy and current lifestyle of sun avoidance due to the risk of skin cancer.
- Type
- Original Article
- Information
- Journal of Developmental Origins of Health and Disease , Volume 4 , Issue 1 , February 2013 , pp. 49 - 55
- Copyright
- Copyright © Cambridge University Press and the International Society for Developmental Origins of Health and Disease 2012
References
- 7
- Cited by