Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-13T02:56:26.443Z Has data issue: false hasContentIssue false

Establishment of the early-life microbiome: a DOHaD perspective

Published online by Cambridge University Press:  11 October 2019

Lisa F. Stinson*
Affiliation:
Division of Obstetrics and Gynaecology, Faculty of Health & Medical Sciences, The University of Western Australia, Perth, WA, Australia
*
Address for correspondence: Lisa F. Stinson, Department of Obstetrics and Gynaecology, The University of Western Australia, 374 Bagot Rd, Subiaco, WA 6008, Australia. Email: lisa.stinson@uwa.edu.au

Abstract

The human microbiome plays a number of critical roles in host physiology. Evidence from longitudinal cohort studies and animal models strongly supports the theory that maldevelopment of the microbiome in early life can programme later-life disease. The early-life microbiome develops in a clear stepwise manner over the first 3 years of life. During this highly dynamic time, insults such as antibiotic use and formula feeding can adversely affect the composition and temporal development of the microbiome. Such experiences predispose infants for the development of chronic health conditions later in life. This review highlights key factors that disrupt the early-life microbiome and highlights major non-communicable diseases which are underpinned by early-life dysbiosis.

Type
Review
Copyright
© Cambridge University Press and the International Society for Developmental Origins of Health and Disease 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Fujimura, KE, Slusher, NA, Cabana, MD, Lynch, SV. Role of the gut microbiota in defining human health. Expert Rev Anti Infect Ther. 2010; 8(4), 435454.CrossRefGoogle ScholarPubMed
Schirbel, A, Kessler, S, Rieder, F, et al. Pro-angiogenic activity of TLRs and NLRs: a novel link between gut microbiota and intestinal angiogenesis. Gastroenterology. 2013; 144(3), 613623e619.CrossRefGoogle ScholarPubMed
Stappenbeck, TS, Hooper, LV, Gordon, JI. Developmental regulation of intestinal angiogenesis by indigenous microbes via Paneth cells. Proc Natl Acad Sci USA. 2002; 99(24), 1545115455.CrossRefGoogle ScholarPubMed
Ceppa, F, Mancini, A, Tuohy, K. Current evidence linking diet to gut microbiota and brain development and function. Int J Food Sci Nutr. 2018; 70, 119. doi: 10.1080/09637486.2018.1462309CrossRefGoogle ScholarPubMed
Lu, J, Lu, L, Yu, Y, Cluette-Brown, J, Martin, CR, Claud, EC. Effects of intestinal microbiota on brain development in humanized gnotobiotic mice. Sci Rep. 2018; 8(1), 5443.CrossRefGoogle ScholarPubMed
Diaz Heijtz, R, Wang, S, Anuar, F, et al. Normal gut microbiota modulates brain development and behavior. Proc Natl Acad Sci USA. 2011; 108(7), 30473052.CrossRefGoogle ScholarPubMed
Clarke, G, O’Mahony, SM, Dinan, TG, Cryan, JF. Priming for health: gut microbiota acquired in early life regulates physiology, brain and behaviour. Acta Paediatr. 2014; 103(8), 812819.CrossRefGoogle ScholarPubMed
Boulange, CL, Neves, AL, Chilloux, J, Nicholson, JK, Dumas, ME. Impact of the gut microbiota on inflammation, obesity, and metabolic disease. Genome Med. 2016; 8(1), 42.CrossRefGoogle ScholarPubMed
Ley, RE. Obesity and the human microbiome. Curr Opin Gastroenterol. 2010; 26(1), 511.CrossRefGoogle ScholarPubMed
Ley, RE, Backhed, F, Turnbaugh, P, Lozupone, CA, Knight, RD, Gordon, JI. Obesity alters gut microbial ecology. Proc Natl Acad Sci USA. 2005; 102(31), 1107011075.CrossRefGoogle ScholarPubMed
Ley, RE, Turnbaugh, PJ, Klein, S, Gordon, JI. Microbial ecology: human gut microbes associated with obesity. Nature. 2006; 444(7122), 10221023.CrossRefGoogle ScholarPubMed
Moreno-Indias, I, Cardona, F, Tinahones, FJ, Queipo-Ortuno, MI. Impact of the gut microbiota on the development of obesity and type 2 diabetes mellitus. Front Microbiol. 2014; 5, 190.CrossRefGoogle ScholarPubMed
Tilg, H, Moschen, AR. Microbiota and diabetes: an evolving relationship. Gut. 2014; 63(9), 15131521.CrossRefGoogle Scholar
Papa, E, Docktor, M, Smillie, C, et al. Non-invasive mapping of the gastrointestinal microbiota identifies children with inflammatory bowel disease. PLoS ONE. 2012; 7(6), e39242.CrossRefGoogle ScholarPubMed
Ni, J, Wu, GD, Albenberg, L, Tomov, VT. Gut microbiota and IBD: causation or correlation? Nat Rev Gastroenterol Hepatol. 2017; 14(10), 573584.CrossRefGoogle ScholarPubMed
Parekh, PJ, Balart, LA, Johnson, DA. The influence of the gut microbiome on obesity, metabolic syndrome and gastrointestinal disease. Clin Transl Gastroenterol. 2015; 6, e91.CrossRefGoogle ScholarPubMed
Chassaing, B, Gewirtz, AT. Gut microbiota, low-grade inflammation, and metabolic syndrome. Toxicol Pathol. 2014; 42(1), 4953.CrossRefGoogle ScholarPubMed
Dahmus, JD, Kotler, DL, Kastenberg, DM, Kistler, CA. The gut microbiome and colorectal cancer: a review of bacterial pathogenesis. J Gastrointest Oncol. 2018; 9(4), 769777.CrossRefGoogle ScholarPubMed
Dai, Z, Coker, OO, Nakatsu, G, et al. Multi-cohort analysis of colorectal cancer metagenome identified altered bacteria across populations and universal bacterial markers. Microbiome. 2018; 6(1), 70.CrossRefGoogle ScholarPubMed
Flemer, B, Lynch, DB, Brown, JM, et al. Tumour-associated and non-tumour-associated microbiota in colorectal cancer. Gut. 2017; 66(4), 633643.CrossRefGoogle ScholarPubMed
Abrahamsson, TR, Jakobsson, HE, Andersson, AF, Bjorksten, B, Engstrand, L, Jenmalm, MC. Low gut microbiota diversity in early infancy precedes asthma at school age. Clin Exp Allergy. 2014; 44(6), 842850.CrossRefGoogle ScholarPubMed
Arrieta, MC, Stiemsma, LT, Dimitriu, PA, et al. Early infancy microbial and metabolic alterations affect risk of childhood asthma. Sci Transl Med. 2015; 7(307), 307ra152.CrossRefGoogle ScholarPubMed
Thorburn, AN, McKenzie, CI, Shen, S, et al. Evidence that asthma is a developmental origin disease influenced by maternal diet and bacterial metabolites. Nat Commun. 2015; 6, 7320.CrossRefGoogle ScholarPubMed
Bjorksten, B, Sepp, E, Julge, K, Voor, T, Mikelsaar, M. Allergy development and the intestinal microflora during the first year of life. J Allergy Clin Immunol. 2001; 108(4), 516520.CrossRefGoogle ScholarPubMed
Debarry, J, Garn, H, Hanuszkiewicz, A, et al. Acinetobacter lwoffii and Lactococcus lactis strains isolated from farm cowsheds possess strong allergy-protective properties. J Allergy Clin Immunol. 2007; 119(6), 15141521.CrossRefGoogle ScholarPubMed
Subbarao, P, Anand, SS, Becker, AB, et al. The Canadian Healthy Infant Longitudinal Development (CHILD) Study: examining developmental origins of allergy and asthma. Thorax. 2015; 70(10), 9981000.CrossRefGoogle ScholarPubMed
Kolodziejczyk, AA, Zheng, D, Shibolet, O, Elinav, E. The role of the microbiome in NAFLD and NASH. EMBO Mol Med. 2019; 11(2), pii: e9302.CrossRefGoogle ScholarPubMed
Warner, BB. The contribution of the gut microbiome to neurodevelopment and neuropsychiatric disorders. Pediatr Res. 2019; 85(2), 216224.CrossRefGoogle ScholarPubMed
Ki-moon, B. Secretary‐General, in Concluding Remarks to Forum, Emphasizes Importance of Partnerships in Race to Meet Health‐Related Millennium Development Goals. (ed. Nations U), 2009. https://www.mja.com.au/journal/2011/194/4/time-global-action-chronic-disease, https://www.who.int/nmh/events/un_ncd_summit2011/3rd_plenary_meeting.pdfGoogle Scholar
Bailar, JC 3rd, Travers, K. Review of assessments of the human health risk associated with the use of antimicrobial agents in agriculture. Clin Infect Dis. 2002; 34(Suppl. 3), S135143.CrossRefGoogle ScholarPubMed
Jernberg, C, Lofmark, S, Edlund, C, Jansson, JK. Long-term impacts of antibiotic exposure on the human intestinal microbiota. Microbiology. 2010; 156(Pt 11), 32163223.CrossRefGoogle ScholarPubMed
Langdon, A, Crook, N, Dantas, G. The effects of antibiotics on the microbiome throughout development and alternative approaches for therapeutic modulation. Genome Med. 2016; 8(1), 39.CrossRefGoogle ScholarPubMed
Thorsen, J, McCauley, K, Fadrosh, D, et al. Evaluating the effects of farm exposure on infant gut microbiome. Journal of Allergy and Clinical Immunology. 2019; 143(2), AB299.CrossRefGoogle Scholar
Hornef, M. Microbiome and Early Life. In The Gut Microbiome in Health and Disease (ed. Haller, D), 2018; pp. 3147. Springer International Publishing, Cham.CrossRefGoogle Scholar
Stewart, CJ, Ajami, NJ, O’Brien, JL, et al. Temporal development of the gut microbiome in early childhood from the TEDDY study. Nature. 2018; 562(7728), 583588.CrossRefGoogle ScholarPubMed
Wampach, L, Heintz-Buschart, A, Hogan, A, et al. Colonization and succession within the human gut microbiome by archaea, bacteria, and microeukaryotes during the first year of life. Front Microbiol. 2017; 8, 738.CrossRefGoogle ScholarPubMed
Bergstrom, A, Skov, TH, Bahl, MI, et al. Establishment of intestinal microbiota during early life: a longitudinal, explorative study of a large cohort of Danish infants. Appl Environ Microbiol. 2014; 80(9), 28892900.CrossRefGoogle ScholarPubMed
Backhed, F, Roswall, J, Peng, Y, et al. Dynamics and stabilization of the human gut microbiome during the first year of life. Cell Host Microbe. 2015; 17(5), 690703.CrossRefGoogle ScholarPubMed
Ferretti, P, Pasolli, E, Tett, A, et al. Mother-to-infant microbial transmission from different body sites shapes the developing infant gut microbiome. Cell Host Microbe. 2018; 24(1), 133145.e5.CrossRefGoogle ScholarPubMed
Yassour, M, Jason, E, Hogstrom, LJ, et al. Strain-level analysis of mother-to-child bacterial transmission during the first few months of life. Cell Host Microbe. 2018; 24(1), 146154.e4.CrossRefGoogle ScholarPubMed
Stokholm, J, Blaser, MJ, Thorsen, J, et al. Maturation of the gut microbiome and risk of asthma in childhood. Nat Commun. 2018; 9(1), 141.CrossRefGoogle ScholarPubMed
van Nimwegen, FA, Penders, J, Stobberingh, EE, et al. Mode and place of delivery, gastrointestinal microbiota, and their influence on asthma and atopy. J Allergy Clin Immunol. 2011; 128(5), 948955.e3.CrossRefGoogle ScholarPubMed
Fujimura, KE, Sitarik, AR, Havstad, S, et al. Neonatal gut microbiota associates with childhood multisensitized atopy and T cell differentiation. Nat Med. 2016; 22(10), 11871191.CrossRefGoogle ScholarPubMed
Kummeling, I, Stelma, FF, Dagnelie, PC, et al. Early life exposure to antibiotics and the subsequent development of eczema, wheeze, and allergic sensitization in the first 2 years of life: the KOALA Birth Cohort Study. Pediatrics. 2007; 119(1), e225231.CrossRefGoogle ScholarPubMed
Hoskin-Parr, L, Teyhan, A, Blocker, A, Henderson, AJ. Antibiotic exposure in the first two years of life and development of asthma and other allergic diseases by 7.5 yr: a dose-dependent relationship. Pediatr Allergy Immunol. 2013; 24(8), 762771.CrossRefGoogle ScholarPubMed
Olszak, T, An, D, Zeissig, S, et al. Microbial exposure during early life has persistent effects on natural killer T cell function. Science. 2012; 336(6080), 489493.CrossRefGoogle ScholarPubMed
Roduit, C, Frei, R, Ferstl, R, et al. High levels of butyrate and propionate in early life are associated with protection against atopy. Allergy. 2019; 74(4), 799809.CrossRefGoogle ScholarPubMed
Stefka, AT, Feehley, T, Tripathi, P, et al. Commensal bacteria protect against food allergen sensitization. Proc Natl Acad Sci USA. 2014; 111(36), 1314513150.CrossRefGoogle ScholarPubMed
Azad, MB, Konya, T, Guttman, DS, et al. Infant gut microbiota and food sensitization: associations in the first year of life. Clin Exp Allergy. 2015; 45(3), 632643.CrossRefGoogle ScholarPubMed
Penders, J, Thijs, C, van den Brandt, PA, et al. Gut microbiota composition and development of atopic manifestations in infancy: the KOALA Birth Cohort Study. Gut. 2007; 56(5), 661667.CrossRefGoogle ScholarPubMed
Penders, J, Thijs, C, Mommers, M, et al. Host-microbial interactions in childhood atopy: toll-like receptor 4 (TLR4), CD14, and fecal Escherichia coli. J Allergy Clin Immunol. 2010; 125(1), 231236.e5.CrossRefGoogle Scholar
Wopereis, H, Sim, K, Shaw, A, Warner, JO, Knol, J, Kroll, JS. Intestinal microbiota in infants at high risk for allergy: effects of prebiotics and role in eczema development. J Allergy Clin Immunol. 2018; 141(4), 13341342.e5.CrossRefGoogle ScholarPubMed
Stiemsma, LT, Arrieta, M-C, Dimitriu, PA, et al. The early life gut microbiota and atopic disease. Allergy Asthma Clin Immunol. 2014; 10(Suppl. 2), A63A63.CrossRefGoogle Scholar
Turnbaugh, PJ, Ridaura, VK, Faith, JJ, Rey, FE, Knight, R, Gordon, JI. The effect of diet on the human gut microbiome: a metagenomic analysis in humanized gnotobiotic mice. Sci Transl Med. 2009; 1(6), 6ra14.CrossRefGoogle ScholarPubMed
Wu, GD, Chen, J, Hoffmann, C, et al. Linking long-term dietary patterns with gut microbial enterotypes. Science. 2011; 334(6052), 105108.CrossRefGoogle ScholarPubMed
Turnbaugh, PJ, Backhed, F, Fulton, L, Gordon, JI. Diet-induced obesity is linked to marked but reversible alterations in the mouse distal gut microbiome. Cell Host Microbe. 2008; 3(4), 213223.CrossRefGoogle ScholarPubMed
Tseng, CH, Wu, CY. The gut microbiome in obesity. J Formos Med Assoc. 2019; 118(Suppl. 1), S3S9.CrossRefGoogle ScholarPubMed
Al-Assal, K, Martinez, AC, Torrinhas, RS, Cardinelli, C, Waitzberg, D. Gut microbiota and obesity. Clinical Nutrition Experimental. 2018; 20, 6064.CrossRefGoogle Scholar
Sun, L, Ma, L, Ma, Y, Zhang, F, Zhao, C, Nie, Y. Insights into the role of gut microbiota in obesity: pathogenesis, mechanisms, and therapeutic perspectives. Protein Cell. 2018; 9(5), 397403.CrossRefGoogle ScholarPubMed
Cornejo-Pareja, I, Munoz-Garach, A, Clemente-Postigo, M, Tinahones, FJ. Importance of gut microbiota in obesity. Eur J Clin Nutr. 2018; 72(Suppl 1), 2637. doi: 10.1038/s41430–018–0306–8.CrossRefGoogle Scholar
Collaborators GBDO, Afshin, A, Forouzanfar, MH, et al. Health effects of overweight and obesity in 195 countries over 25 years. N Engl J Med. 2017; 377(1), 1327.Google ScholarPubMed
Dogra, S, Sakwinska, O, Soh, SE, et al. Dynamics of infant gut microbiota are influenced by delivery mode and gestational duration and are associated with subsequent adiposity. MBio. 2015; 6(1), 193.CrossRefGoogle ScholarPubMed
Stanislawski, MA, Dabelea, D, Wagner, BD, et al. Gut microbiota in the first 2 years of life and the association with body mass index at age 12 in a Norwegian Birth Cohort. MBio. 2018; 9(5), pii: e01751-18.CrossRefGoogle Scholar
Trasande, L, Blustein, J, Liu, M, Corwin, E, Cox, LM, Blaser, MJ. Infant antibiotic exposures and early-life body mass. Int J Obes (Lond). 2013; 37(1), 1623.CrossRefGoogle ScholarPubMed
Azad, MB, Bridgman, SL, Becker, AB, Kozyrskyj, AL. Infant antibiotic exposure and the development of childhood overweight and central adiposity. Int J Obes (Lond). 2014; 38(10), 12901298.CrossRefGoogle ScholarPubMed
Bailey, LC, Forrest, CB, Zhang, P, Richards, TM, Livshits, A, DeRusso, PA. Association of antibiotics in infancy with early childhood obesity. JAMA Pediatr. 2014; 168(11), 10631069.CrossRefGoogle ScholarPubMed
Cho, I, Yamanishi, S, Cox, L, et al. Antibiotics in early life alter the murine colonic microbiome and adiposity. Nature. 2012; 488(7413), 621626.CrossRefGoogle ScholarPubMed
Cox, LM, Yamanishi, S, Sohn, J, et al. Altering the intestinal microbiota during a critical developmental window has lasting metabolic consequences. Cell. 2014; 158(4), 705721.CrossRefGoogle ScholarPubMed
Mueller, NT, Whyatt, R, Hoepner, L, et al. Prenatal exposure to antibiotics, cesarean section and risk of childhood obesity. Int J Obes (Lond). 2015; 39(4), 665670.CrossRefGoogle ScholarPubMed
Chu, DM, Antony, KM, Ma, J, et al. The early infant gut microbiome varies in association with a maternal high-fat diet. Genome Med. 2016; 8(1), 77.CrossRefGoogle ScholarPubMed
Paul, HA, Bomhof, MR, Vogel, HJ, Reimer, RA. Diet-induced changes in maternal gut microbiota and metabolomic profiles influence programming of offspring obesity risk in rats. Sci Rep. 2016; 6, 20683.CrossRefGoogle ScholarPubMed
Wankhade, UD, Zhong, Y, Kang, P, et al. Enhanced offspring predisposition to steatohepatitis with maternal high-fat diet is associated with epigenetic and microbiome alterations. PLoS ONE. 2017; 12(4), e0175675.CrossRefGoogle ScholarPubMed
Ma, J, Prince, AL, Bader, D, et al. High-fat maternal diet during pregnancy persistently alters the offspring microbiome in a primate model. Nat Commun. 2014; 5, 3889.CrossRefGoogle Scholar
Bravo, JA, Forsythe, P, Chew, MV, et al. Ingestion of lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proc Natl Acad Sci USA. 2011; 108(38), 1605016055.CrossRefGoogle Scholar
Dinan, TG, Cryan, JF. Regulation of the stress response by the gut microbiota: implications for psychoneuroendocrinology. Psychoneuroendocrinology. 2012; 37(9), 13691378.CrossRefGoogle ScholarPubMed
Erny, D, Hrabe de Angelis, AL, Jaitin, D, et al. Host microbiota constantly control maturation and function of microglia in the CNS. Nat Neurosci. 2015; 18(7), 965977.CrossRefGoogle ScholarPubMed
Konig, J, Wells, J, Cani, PD, et al. Human intestinal barrier function in health and disease. Clin Transl Gastroenterol. 2016; 7(10), e196.CrossRefGoogle ScholarPubMed
Dinan, TG, Cryan, JF. Gut instincts: microbiota as a key regulator of brain development, ageing and neurodegeneration. J Physiol. 2017; 595(2), 489503.CrossRefGoogle ScholarPubMed
Liu, F, Li, J, Wu, F, Zheng, H, Peng, Q, Zhou, H. Altered composition and function of intestinal microbiota in autism spectrum disorders: a systematic review. Transl Psychiatry. 2019; 9(1), 43.CrossRefGoogle ScholarPubMed
Sampson, TR, Debelius, JW, Thron, T, et al. Gut microbiota regulate motor deficits and neuroinflammation in a model of Parkinson’s disease. Cell. 2016; 167(6), 14691480.e12.CrossRefGoogle Scholar
Vogt, NM, Kerby, RL, Dill-McFarland, KA, et al. Gut microbiome alterations in Alzheimer’s disease. Sci Rep. 2017; 7(1), 13537.CrossRefGoogle ScholarPubMed
Valles-Colomer, M, Falony, G, Darzi, Y, et al. The neuroactive potential of the human gut microbiota in quality of life and depression. Nat Microbiol. 2019; 4(4), 623632.CrossRefGoogle ScholarPubMed
Zheng, P, Zeng, B, Liu, M, et al. The gut microbiome from patients with schizophrenia modulates the glutamate-glutamine-GABA cycle and schizophrenia-relevant behaviors in mice. Sci Adv. 2019; 5(2), eaau8317.CrossRefGoogle ScholarPubMed
Babulas, V, Factor-Litvak, P, Goetz, R, Schaefer, CA, Brown, AS. Prenatal exposure to maternal genital and reproductive infections and adult schizophrenia. Am J Psychiatry. 2006; 163(5), 927929.CrossRefGoogle ScholarPubMed
Blomstrom, A, Karlsson, H, Gardner, R, Jorgensen, L, Magnusson, C, Dalman, C. Associations between maternal infection during pregnancy, childhood infections, and the risk of subsequent psychotic disorder--a Swedish cohort study of nearly 2 million individuals. Schizophr Bull. 2016; 42(1), 125133.Google ScholarPubMed
Carlson, AL, Xia, K, Azcarate-Peril, MA, et al. Infant gut microbiome associated with cognitive development. Biol Psychiatry. 2018; 83(2), 148159.CrossRefGoogle ScholarPubMed
Sordillo, JE, Korrick, S, Laranjo, N, et al. Association of the infant gut microbiome with early childhood neurodevelopmental outcomes: an ancillary study to the VDAART randomized clinical trial. JAMA Netw Open. 2019; 2(3), e190905.CrossRefGoogle ScholarPubMed
Forssberg, H. Microbiome programming of brain development: implications for neurodevelopmental disorders. Dev Med Child Neurol. 2019; 61, 744749. doi: 10.1111/dmcn.14208.CrossRefGoogle ScholarPubMed
Tochitani, S, Ikeno, T, Ito, T, Sakurai, A, Yamauchi, T, Matsuzaki, H. Administration of non-absorbable antibiotics to pregnant mice to perturb the maternal gut microbiota is associated with alterations in offspring behavior. PLoS ONE. 2016; 11(1), e0138293.CrossRefGoogle ScholarPubMed
Gur, TL, Shay, L, Palkar, AV, et al. Prenatal stress affects placental cytokines and neurotrophins, commensal microbes, and anxiety-like behavior in adult female offspring. Brain Behav Immun. 2017; 64, 5058.CrossRefGoogle ScholarPubMed
Buffington, SA, Di Prisco, GV, Auchtung, TA, Ajami, NJ, Petrosino, JF, Costa-Mattioli, M. Microbial reconstitution reverses maternal diet-induced social and synaptic deficits in offspring. Cell. 2016; 165(7), 17621775.CrossRefGoogle ScholarPubMed
Sgritta, M, Dooling, SW, Buffington, SA, et al. Mechanisms underlying microbial-mediated changes in social behavior in mouse models of autism spectrum disorder. Neuron. 2019; 101(2), 246259.e6.CrossRefGoogle ScholarPubMed
Schloss, PD, Iverson, KD, Petrosino, JF, Schloss, SJ. The dynamics of a family’s gut microbiota reveal variations on a theme. Microbiome. 2014; 2, 25.CrossRefGoogle ScholarPubMed
Koenig, JE, Spor, A, Scalfone, N, et al. Succession of microbial consortia in the developing infant gut microbiome. Proc Natl Acad Sci USA. 2011; 108(Suppl. 1), 45784585.CrossRefGoogle ScholarPubMed
Fallani, M, Amarri, S, Uusijarvi, A, et al. Determinants of the human infant intestinal microbiota after the introduction of first complementary foods in infant samples from five European centres. Microbiology. 2011; 157(Pt 5), 13851392.CrossRefGoogle ScholarPubMed
Rashid, MU, Zaura, E, Buijs, MJ, et al. Determining the long-term effect of antibiotic administration on the human normal intestinal microbiota using culture and pyrosequencing methods. Clin Infect Dis. 2015; 60(Suppl. 2), S7784.CrossRefGoogle ScholarPubMed
Berardi, A, Pietrangiolillo, Z, Bacchi Reggiani, ML, et al. Are postnatal ampicillin levels actually related to the duration of intrapartum antibiotic prophylaxis prior to delivery? A pharmacokinetic study in 120 neonates. Arch Dis Child Fetal Neonatal Ed. 2017; 103(2), F152F156. doi: 10.1136/archdischild-2016–312546CrossRefGoogle ScholarPubMed
Korpela, K, Salonen, A, Virta, LJ, et al. Intestinal microbiome is related to lifetime antibiotic use in Finnish pre-school children. Nat Commun. 2016; 7, 10410.CrossRefGoogle ScholarPubMed
Oldenburg, CE, Sie, A, Coulibaly, B, et al. Effect of commonly used pediatric antibiotics on gut microbial diversity in preschool children in Burkina Faso: a randomized clinical trial. Open Forum Infect Dis. 2018; 5(11), ofy289.CrossRefGoogle ScholarPubMed
Yassour, M, Vatanen, T, Siljander, H, et al. Natural history of the infant gut microbiome and impact of antibiotic treatment on bacterial strain diversity and stability. Sci Transl Med. 2016; 8(343), 343ra381.CrossRefGoogle ScholarPubMed
Nogacka, A, Salazar, N, Suarez, M, et al. Impact of intrapartum antimicrobial prophylaxis upon the intestinal microbiota and the prevalence of antibiotic resistance genes in vaginally delivered full-term neonates. Microbiome. 2017; 5(1), 93.CrossRefGoogle ScholarPubMed
Azad, MB, Konya, T, Persaud, RR, et al. Impact of maternal intrapartum antibiotics, method of birth and breastfeeding on gut microbiota during the first year of life: a prospective cohort study. BJOG. 2016; 123(6), 983993.CrossRefGoogle ScholarPubMed
Mazzola, G, Murphy, K, Ross, RP, et al. Early gut microbiota perturbations following intrapartum antibiotic prophylaxis to prevent group B streptococcal disease. PLoS ONE. 2016; 11(6), e0157527.CrossRefGoogle ScholarPubMed
Aloisio, I, Mazzola, G, Corvaglia, LT, et al. Influence of intrapartum antibiotic prophylaxis against group B streptococcus on the early newborn gut composition and evaluation of the anti-streptococcus activity of bifidobacterium strains. Appl Microbiol Biotechnol. 2014; 98(13), 60516060.Google ScholarPubMed
Fallani, M, Young, D, Scott, J, et al. Intestinal microbiota of 6-week-old infants across Europe: geographic influence beyond delivery mode, breast-feeding, and antibiotics. J Pediatr Gastroenterol Nutr. 2010; 51(1), 7784.CrossRefGoogle ScholarPubMed
Fouhy, F, Guinane, CM, Hussey, S, et al. High-throughput sequencing reveals the incomplete, short-term recovery of infant gut microbiota following parenteral antibiotic treatment with ampicillin and gentamicin. Antimicrob Agents Chemother. 2012; 56(11), 58115820.CrossRefGoogle ScholarPubMed
Stinson, LF, Payne, MS, Keelan, JA. A critical review of the bacterial baptism hypothesis and the impact of cesarean delivery on the infant microbiome. Front Med (Lausanne). 2018; 5, 135.CrossRefGoogle ScholarPubMed
Lapin, B, Piorkowski, J, Ownby, D, et al. Relationship between prenatal antibiotic use and asthma in at-risk children. Ann Allergy Asthma Immunol. 2015; 114(3), 203207.CrossRefGoogle ScholarPubMed
Metsala, J, Lundqvist, A, Virta, LJ, Kaila, M, Gissler, M, Virtanen, SM. Prenatal and post-natal exposure to antibiotics and risk of asthma in childhood. Clin Exp Allergy. 2015; 45(1), 137145.CrossRefGoogle ScholarPubMed
Ortqvist, AK, Lundholm, C, Kieler, H, et al. Antibiotics in fetal and early life and subsequent childhood asthma: nationwide population based study with sibling analysis. BMJ. 2014; 349, g6979.CrossRefGoogle ScholarPubMed
Stensballe, LG, Simonsen, J, Jensen, SM, Bonnelykke, K, Bisgaard, H. Use of antibiotics during pregnancy increases the risk of asthma in early childhood. J Pediatr. 2013; 162(4), 832838.e3.CrossRefGoogle ScholarPubMed
McKeever, TM, Lewis, SA, Smith, C, Hubbard, R. The importance of prenatal exposures on the development of allergic disease: a birth cohort study using the West Midlands General Practice Database. Am J Respir Crit Care Med. 2002; 166(6), 827832.CrossRefGoogle Scholar
Wohl, DL, Curry, WJ, Mauger, D, Miller, J, Tyrie, K. Intrapartum antibiotics and childhood atopic dermatitis. J Am Board Fam Med. 2015; 28(1), 8289.CrossRefGoogle ScholarPubMed
OECD. Health at a Glance 2015, 2015. OECD Indicators, OECD Publishing, Paris. doi: 10.1787/health_glance-2015-enGoogle Scholar
Angstetra, D, Ferguson, J, Giles, WB. Institution of universal screening for Group B streptococcus (GBS) from a risk management protocol results in reduction of early-onset GBS disease in a tertiary obstetric unit. Aust N Z J Obstet Gynaecol. 2007; 47(5), 378382.CrossRefGoogle Scholar
Furfaro, LL, Nathan, EA, Chang, BJ, Payne, MS. Group B streptococcus prevalence, serotype distribution and colonization dynamics in Western Australian pregnant women. J Med Microbiol. 2019; 68(5), 728740.CrossRefGoogle ScholarPubMed
Hiller, JE, McDonald, HM, Darbyshire, P, Crowther, CA. Antenatal screening for Group B Streptococcus: a diagnostic cohort study. BMC Pregnancy Childbirth. 2005; 5, 12.CrossRefGoogle Scholar
Azad, MB, Konya, T, Maughan, H, et al. Gut microbiota of healthy Canadian infants: profiles by mode of delivery and infant diet at 4 months. CMAJ. 2013; 185(5), 385394.CrossRefGoogle ScholarPubMed
Penders, J, Thijs, C, Vink, C, et al. Factors influencing the composition of the intestinal microbiota in early infancy. Pediatrics. 2006; 118(2), 511521.CrossRefGoogle ScholarPubMed
Bokulich, NA, Chung, J, Battaglia, T, et al. Antibiotics, birth mode, and diet shape microbiome maturation during early life. Sci Transl Med. 2016; 8(343), 343ra382.CrossRefGoogle ScholarPubMed
Jakobsson, HE, Abrahamsson, TR, Jenmalm, MC, et al. Decreased gut microbiota diversity, delayed bacteroidetes colonisation and reduced Th1 responses in infants delivered by caesarean section. Gut. 2014; 63(4), 559566.CrossRefGoogle ScholarPubMed
Martin, R, Makino, H, Cetinyurek Yavuz, A, et al. Early-life events, including mode of delivery and type of feeding, siblings and gender, shape the developing gut microbiota. PLoS ONE. 2016; 11(6), e0158498.CrossRefGoogle ScholarPubMed
Debley, JS, Smith, JM, Redding, GJ, Critchlow, CW. Childhood asthma hospitalization risk after cesarean delivery in former term and premature infants. Ann Allergy Asthma Immunol. 2005; 94(2), 228233.CrossRefGoogle ScholarPubMed
Sevelsted, A, Stokholm, J, Bonnelykke, K, Bisgaard, H. Cesarean section and chronic immune disorders. Pediatrics. 2015; 135(1), e9298.CrossRefGoogle ScholarPubMed
Thavagnanam, S, Fleming, J, Bromley, A, Shields, MD, Cardwell, CR. A meta-analysis of the association between caesarean section and childhood asthma. Clin Exp Allergy. 2008; 38(4), 629633.CrossRefGoogle ScholarPubMed
Laubereau, B, Filipiak-Pittroff, B, von Berg, A, et al. Caesarean section and gastrointestinal symptoms, atopic dermatitis, and sensitisation during the first year of life. Arch Dis Child. 2004; 89(11), 993997.CrossRefGoogle ScholarPubMed
Negele, K, Heinrich, J, Borte, M, et al. Mode of delivery and development of atopic disease during the first 2 years of life. Pediatr Allergy Immunol. 2004; 15(1), 4854.CrossRefGoogle ScholarPubMed
Bager, P, Wohlfahrt, J, Westergaard, T. Caesarean delivery and risk of atopy and allergic disease: meta-analyses. Clin Exp Allergy. 2008; 38(4), 634642.CrossRefGoogle ScholarPubMed
Eggesbo, M, Botten, G, Stigum, H, Nafstad, P, Magnus, P. Is delivery by cesarean section a risk factor for food allergy? J Allergy Clin Immunol. 2003; 112(2), 420426.CrossRefGoogle ScholarPubMed
Darmasseelane, K, Hyde, MJ, Santhakumaran, S, Gale, C, Modi, N. Mode of delivery and offspring body mass index, overweight and obesity in adult life: a systematic review and meta-analysis. PLoS ONE. 2014; 9(2), e87896.CrossRefGoogle ScholarPubMed
Cardwell, CR, Stene, LC, Joner, G, et al. Caesarean section is associated with an increased risk of childhood-onset type 1 diabetes mellitus: a meta-analysis of observational studies. Diabetologia. 2008; 51(5), 726735.CrossRefGoogle ScholarPubMed
Li, Y, Tian, Y, Zhu, W, et al. Cesarean delivery and risk of inflammatory bowel disease: a systematic review and meta-analysis. Scand J Gastroenterol. 2014; 49(7), 834844.CrossRefGoogle ScholarPubMed
Polidano, C, Zhu, A, Bornstein, JC. The relation between cesarean birth and child cognitive development. Sci Rep. 2017; 7(1), 11483.CrossRefGoogle ScholarPubMed
Dominguez-Bello, MG, De Jesus-Laboy, KM, Shen, N, et al. Partial restoration of the microbiota of cesarean-born infants via vaginal microbial transfer. Nat Med. 2016; 22(3), 250253.CrossRefGoogle ScholarPubMed
Marchi, J, Berg, M, Dencker, A, Olander, EK, Begley, C. Risks associated with obesity in pregnancy, for the mother and baby: a systematic review of reviews. Obes Rev. 2015; 16(8), 621638.CrossRefGoogle ScholarPubMed
Al-Kubaisy, W, Al-Rubaey, M, Al-Naggar, RA, Karim, B, Mohd Noor, NA. Maternal obesity and its relation with the cesarean section: a hospital based cross sectional study in Iraq. BMC Pregnancy Childbirth. 2014; 14, 235.CrossRefGoogle Scholar
Berendzen, JA, Howard, BC. Association between cesarean delivery rate and body mass index. Tenn Med. 2013; 106(1), 3537, 42.Google ScholarPubMed
Cresswell, JA, Campbell, OM, De Silva, MJ, Slaymaker, E, Filippi, V. Maternal obesity and caesarean delivery in sub-Saharan Africa. Trop Med Int Health. 2016; 21(7), 879885.CrossRefGoogle ScholarPubMed
Kyvernitakis, I, Kohler, C, Schmidt, S, et al. Impact of maternal body mass index on the cesarean delivery rate in Germany from 1990 to 2012. J Perinat Med. 2015; 43(4), 449454.CrossRefGoogle ScholarPubMed
Roman, H, Goffinet, F, Hulsey, TF, Newman, R, Robillard, PY, Hulsey, TC. Maternal body mass index at delivery and risk of caesarean due to dystocia in low risk pregnancies. Acta Obstet Gynecol Scand. 2008; 87(2), 163170.CrossRefGoogle ScholarPubMed
Tun, HM, Bridgman, SL, Chari, R, et al. Roles of birth mode and infant gut microbiota in intergenerational transmission of overweight and obesity from mother to offspring. JAMA Pediatr. 2018; doi: 10.1001/jamapediatrics.2017.5535.CrossRefGoogle Scholar
Delnord, M, Blondel, B, Drewniak, N, et al. Varying gestational age patterns in cesarean delivery: an international comparison. BMC Pregnancy Childbirth. 2014; 14, 321.CrossRefGoogle Scholar
Dewey, KG, Nommsen-Rivers, LA, Heinig, MJ, Cohen, RJ. Risk factors for suboptimal infant breastfeeding behavior, delayed onset of lactation, and excess neonatal weight loss. Pediatrics. 2003; 112(3), 607619.CrossRefGoogle ScholarPubMed
Bai, DL, Wu, KM, Tarrant, M. Association between intrapartum interventions and breastfeeding duration. J Midwifery Womens Health. 2013; 58(1), 2532.CrossRefGoogle ScholarPubMed
Evans, KC, Evans, RG, Royal, R, Esterman, AJ, James, SL. Effect of caesarean section on breast milk transfer to the normal term newborn over the first week of life. Arch Dis Child Fetal Neonatal Ed. 2003; 88(5), F380382.CrossRefGoogle ScholarPubMed
Collado, MC, Rautava, S, Aakko, J, Isolauri, E, Salminen, S. Human gut colonisation may be initiated in utero by distinct microbial communities in the placenta and amniotic fluid. Sci Rep. 2016; 6, 23129.CrossRefGoogle ScholarPubMed
Stinson, LF, Keelan, JA, Payne, MS. Characterization of the bacterial microbiome in first-pass meconium using propidium monoazide (PMA) to exclude nonviable bacterial DNA. Lett Appl Microbiol. 2019; 68(5), 378385.CrossRefGoogle ScholarPubMed
Stinson, LF, Payne, MS, Keelan, JA. Planting the seed: origins, composition, and postnatal health significance of the fetal gastrointestinal microbiota. Crit Rev Microbiol. 2016; 118. doi: 10.1080/1040841X.2016.1211088CrossRefGoogle Scholar
Jimenez, E, Marin, ML, Martin, R, et al. Is meconium from healthy newborns actually sterile? Res Microbiol. 2008; 159(3), 187193.CrossRefGoogle ScholarPubMed
Perez-Munoz, ME, Arrieta, MC, Ramer-Tait, AE, Walter, J. A critical assessment of the “sterile womb” and “in utero colonization” hypotheses: implications for research on the pioneer infant microbiome. Microbiome. 2017; 5(1), 48.CrossRefGoogle ScholarPubMed
Romano-Keeler, J, Weitkamp, JH. Maternal influences on fetal microbial colonization and immune development. Pediatr Res. 2015; 77(1–2), 189195.CrossRefGoogle ScholarPubMed
Perez, PF, Dore, J, Leclerc, M, et al. Bacterial imprinting of the neonatal immune system: lessons from maternal cells? Pediatrics. 2007; 119(3), e724732.CrossRefGoogle ScholarPubMed
Taft, DH, Ambalavanan, N, Schibler, KR, et al. Intestinal microbiota of preterm infants differ over time and between hospitals. Microbiome. 2014; 2, 36.CrossRefGoogle ScholarPubMed
Patel, K, Konduru, K, Patra, AK, Chandel, DS, Panigrahi, P. Trends and determinants of gastric bacterial colonization of preterm neonates in a NICU setting. PLoS ONE. 2015; 10(7), e0114664.CrossRefGoogle Scholar
Ardissone, AN, de la Cruz, DM, Davis-Richardson, AG, et al. Meconium microbiome analysis identifies bacteria correlated with premature birth. PLoS ONE. 2014; 9(3), e90784.CrossRefGoogle ScholarPubMed
Arboleya, S, Binetti, A, Salazar, N, et al. Establishment and development of intestinal microbiota in preterm neonates. FEMS Microbiol Ecol. 2012; 79(3), 763772.CrossRefGoogle ScholarPubMed
Hill, CJ, Lynch, DB, Murphy, K, et al. Evolution of gut microbiota composition from birth to 24 weeks in the INFANTMET Cohort. Microbiome. 2017; 5(1), 4.CrossRefGoogle ScholarPubMed
La Rosa, PS, Warner, BB, Zhou, Y, et al. Patterned progression of bacterial populations in the premature infant gut. Proc Natl Acad Sci USA. 2014; 111(34), 1252212527.CrossRefGoogle ScholarPubMed
Thompson, AL, Monteagudo-Mera, A, Cadenas, MB, Lampl, ML, Azcarate-Peril, MA. Milk- and solid-feeding practices and daycare attendance are associated with differences in bacterial diversity, predominant communities, and metabolic and immune function of the infant gut microbiome. Front Cell Infect Microbiol. 2015; 5, 3.CrossRefGoogle ScholarPubMed
Harmsen, HJ, Wildeboer-Veloo, AC, Raangs, GC, et al. Analysis of intestinal flora development in breast-fed and formula-fed infants by using molecular identification and detection methods. J Pediatr Gastroenterol Nutr. 2000; 30(1), 6167.CrossRefGoogle ScholarPubMed
Martin, V, Maldonado-Barragan, A, Moles, L, et al. Sharing of bacterial strains between breast milk and infant feces. J Hum Lact. 2012; 28(1), 3644.CrossRefGoogle ScholarPubMed
Rogier, EW, Frantz, AL, Bruno, ME, et al. Secretory antibodies in breast milk promote long-term intestinal homeostasis by regulating the gut microbiota and host gene expression. Proc Natl Acad Sci USA. 2014; 111(8), 30743079.CrossRefGoogle ScholarPubMed
Schwartz, S, Friedberg, I, Ivanov, IV, et al. A metagenomic study of diet-dependent interaction between gut microbiota and host in infants reveals differences in immune response. Genome Biol. 2012; 13(4), r32.CrossRefGoogle ScholarPubMed
Praveen, P, Jordan, F, Priami, C, Morine, MJ. The role of breast-feeding in infant immune system: a systems perspective on the intestinal microbiome. Microbiome. 2015; 3, 41.CrossRefGoogle ScholarPubMed
Pannaraj, PS, Li, F, Cerini, C, et al. Association between breast milk bacterial communities and establishment and development of the infant gut microbiome. JAMA Pediatr. 2017; 171(7), 647654.CrossRefGoogle ScholarPubMed
Marcobal, A, Sonnenburg, JL. Human milk oligosaccharide consumption by intestinal microbiota. Clin Microbiol Infect. 2012; 18(Suppl. 4), 1215.CrossRefGoogle ScholarPubMed
Ho, NT, Li, F, Lee-Sarwar, KA, et al. Meta-analysis of effects of exclusive breastfeeding on infant gut microbiota across populations. Nat Commun. 2018; 9(1), 4169.CrossRefGoogle ScholarPubMed
Forbes, JD, Azad, MB, Vehling, L, et al. Association of exposure to formula in the hospital and subsequent infant feeding practices with gut microbiota and risk of overweight in the first year of life association of breastfeeding with gut microbiota and risk of overweightassociation of breastfeeding with gut microbiota and risk of overweight. JAMA Pediatr. 2018; 172(7), e181161.CrossRefGoogle ScholarPubMed
Rautava, S. Early microbial contact, the breast milk microbiome and child health. J Dev Orig Health Dis. 2015; 7(1), 110. doi: 10.1017/S2040174415001233Google ScholarPubMed
Bezirtzoglou, E, Tsiotsias, A, Welling, GW. Microbiota profile in feces of breast- and formula-fed newborns by using fluorescence in situ hybridization (FISH). Anaerobe. 2011; 17(6), 478482.CrossRefGoogle Scholar
Kelishadi, R, Farajian, S. The protective effects of breastfeeding on chronic non-communicable diseases in adulthood: A review of evidence. Adv Biomed Res. 2014; 3, 3.CrossRefGoogle ScholarPubMed
Akobeng, AK, Ramanan, AV, Buchan, I, Heller, RF. Effect of breast feeding on risk of coeliac disease: a systematic review and meta-analysis of observational studies. Arch Dis Child. 2006; 91(1), 3943.CrossRefGoogle ScholarPubMed
Moossavi, S, Sepehri, S, Robertson, B, et al. Composition and variation of the human milk microbiota are influenced by maternal and early-life factors. Cell Host Microbe. 2019; 25(2), 324335.e4.CrossRefGoogle ScholarPubMed
Sugino, KY, Paneth, N, Comstock, SS. Michigan cohorts to determine associations of maternal pre-pregnancy body mass index with pregnancy and infant gastrointestinal microbial communities: late pregnancy and early infancy. PLoS ONE. 2019; 14(3), e0213733.CrossRefGoogle ScholarPubMed
Galley, JD, Bailey, M, Kamp Dush, C, Schoppe-Sullivan, S, Christian, LM. Maternal obesity is associated with alterations in the gut microbiome in toddlers. PLoS ONE. 2014; 9(11), e113026.CrossRefGoogle ScholarPubMed
Mueller, NT, Shin, H, Pizoni, A, et al. Birth mode-dependent association between pre-pregnancy maternal weight status and the neonatal intestinal microbiome. Sci Rep. 2016; 6, 23133.CrossRefGoogle ScholarPubMed
Lemas, DJ, Young, BE, Baker, PR 2nd, et al. Alterations in human milk leptin and insulin are associated with early changes in the infant intestinal microbiome. Am J Clin Nutr. 2016; 103(5), 12911300.CrossRefGoogle ScholarPubMed
Collado, MC, Isolauri, E, Laitinen, K, Salminen, S. Effect of mother’s weight on infant’s microbiota acquisition, composition, and activity during early infancy: a prospective follow-up study initiated in early pregnancy. Am J Clin Nutr. 2010; 92(5), 10231030.CrossRefGoogle ScholarPubMed
Soderborg, TK, Clark, SE, Mulligan, CE, et al. The gut microbiota in infants of obese mothers increases inflammation and susceptibility to NAFLD. Nat Commun. 2018; 9(1), 4462.CrossRefGoogle ScholarPubMed
Chen, C, Xu, X, Yan, Y. Estimated global overweight and obesity burden in pregnant women based on panel data model. PLoS ONE. 2018; 13(8), e0202183.CrossRefGoogle ScholarPubMed
Chu, SY, Kim, SY, Schmid, CH, et al. Maternal obesity and risk of cesarean delivery: a meta-analysis. Obes Rev. 2007; 8(5), 385394.CrossRefGoogle ScholarPubMed
Lepe, M, Bacardi Gascon, M, Castaneda-Gonzalez, LM, Perez Morales, ME, Jimenez Cruz, A. Effect of maternal obesity on lactation: systematic review. Nutr Hosp. 2011; 26(6), 12661269.Google ScholarPubMed
Steegenga, WT, Mischke, M, Lute, C, et al. Maternal exposure to a Western-style diet causes differences in intestinal microbiota composition and gene expression of suckling mouse pups. Mol Nutr Food Res. 2017; 61(1).CrossRefGoogle Scholar
Zijlmans, MAC, Korpela, K, Riksen-Walraven, JM, de Vos, WM, de Weerth, C. Maternal prenatal stress is associated with the infant intestinal microbiota. Psychoneuroendocrinology. 2015; 53, 233245.CrossRefGoogle ScholarPubMed
Jasarevic, E, Howard, CD, Misic, AM, Beiting, DP, Bale, TL. Stress during pregnancy alters temporal and spatial dynamics of the maternal and offspring microbiome in a sex-specific manner. Sci Rep. 2017; 7, 44182.CrossRefGoogle Scholar
Golubeva, AV, Crampton, S, Desbonnet, L, et al. Prenatal stress-induced alterations in major physiological systems correlate with gut microbiota composition in adulthood. Psychoneuroendocrinology. 2015; 60, 5874.CrossRefGoogle ScholarPubMed
Gur, TL, Bailey, MT. Effects of stress on commensal microbes and immune system activity. Adv Exp Med Biol. 2016; 874, 289300.CrossRefGoogle ScholarPubMed
Ferrocino, I, Ponzo, V, Gambino, R, et al. Changes in the gut microbiota composition during pregnancy in patients with gestational diabetes mellitus (GDM). Sci Rep. 2018; 8(1), 12216.CrossRefGoogle Scholar
Crusell, MKW, Hansen, TH, Nielsen, T, et al. Gestational diabetes is associated with change in the gut microbiota composition in third trimester of pregnancy and postpartum. Microbiome. 2018; 6(1), 89.CrossRefGoogle ScholarPubMed
Cortez, RV, Taddei, CR, Sparvoli, LG, et al. Microbiome and its relation to gestational diabetes. Endocrine. 2019; 64(2), 254264.CrossRefGoogle ScholarPubMed
Wang, J, Zheng, J, Shi, W, et al. Dysbiosis of maternal and neonatal microbiota associated with gestational diabetes mellitus. Gut. 2018; 67(9), 16141625. doi: 10.1136/gutjnl-2018–315988CrossRefGoogle ScholarPubMed
Hu, J, Nomura, Y, Bashir, A, et al. Diversified microbiota of meconium is affected by maternal diabetes status. PLoS ONE. 2013; 8(11), e78257.CrossRefGoogle ScholarPubMed
Hasan, S, Aho, V, Pereira, P, et al. Gut microbiome in gestational diabetes: a cross-sectional study of mothers and offspring 5 years postpartum. Acta Obstet Gynecol Scand. 2018; 97(1), 3846.CrossRefGoogle ScholarPubMed
Lynch, SV, Wood, RA, Boushey, H, et al. Effects of early-life exposure to allergens and bacteria on recurrent wheeze and atopy in urban children. J Allergy Clin Immunol. 2014; 134(3), 593601.e2.CrossRefGoogle ScholarPubMed
Fujimura, KE, Johnson, CC, Ownby, DR, et al. Man’s best friend? The effect of pet ownership on house dust microbial communities. J Allergy Clin Immunol. 2010; 126(2), 410412, 412 e411–413.CrossRefGoogle ScholarPubMed
Fujimura, KE, Demoor, T, Rauch, M, et al. House dust exposure mediates gut microbiome lactobacillus enrichment and airway immune defense against allergens and virus infection. Proc Natl Acad Sci USA. 2014; 111(2), 805810.CrossRefGoogle ScholarPubMed
Laursen, MF, Zachariassen, G, Bahl, MI, et al. Having older siblings is associated with gut microbiota development during early childhood. BMC Microbiol. 2015; 15, 154.CrossRefGoogle ScholarPubMed
Hesselmar, B, Aberg, N, Aberg, B, Eriksson, B, Bjorksten, B. Does early exposure to cat or dog protect against later allergy development? Clin Exp Allergy. 1999; 29(5), 611617.CrossRefGoogle ScholarPubMed
Gereda, JE, Leung, DY, Thatayatikom, A, et al. Relation between house-dust endotoxin exposure, type 1 T-cell development, and allergen sensitisation in infants at high risk of asthma. Lancet. 2000; 355(9216), 16801683.CrossRefGoogle Scholar
Ownby, DR, Johnson, CC, Peterson, EL. Exposure to dogs and cats in the first year of life and risk of allergic sensitization at 6 to 7 years of age. JAMA. 2002; 288(8), 963972.CrossRefGoogle ScholarPubMed