Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-27T04:56:59.119Z Has data issue: false hasContentIssue false

Newborns physiological differences in low- and high-altitude settings of Ecuador

Published online by Cambridge University Press:  21 September 2021

Mayra Asas-Jinde
Affiliation:
Colegio de Ciencias de la Salud, Escuela de Especialidades Médicas, Universidad San Francisco de Quito USFQ, calle Diego DE Robles s/n y Pampite, Quito, Ecuador
Fabricio González-Andrade*
Affiliation:
Facultad de Ciencias Médicas, Universidad Central del Ecuador, Unidad de Medicina Traslacional, Quito, Ecuador
*
Address for correspondence: Fabricio González-Andrade, Universidad Central del Ecuador, Facultad de Ciencias Médicas, Unidad de Medicina Traslacional, Iquique N14-121 y Sodiro-Itchimbía, Quito 170403, Ecuador. Email: fabriciogonzaleza@gmail.com

Abstract

Newborns show physiological differences in low- and high-altitude settings of Ecuador; those differences are especially relevant because most important cities in Ecuador are located at high altitude, above 2500 m. This study is an epidemiological, observational, and cross-sectional research performed at San Francisco Hospital in Quito (at 2850 m) and General Hospital in Manta (at 6 m) in the Manabí province. We studied 204 full-term newborns, healthy without any prenatal comorbidities, singleton pregnancy, mestizos, and born of healthy parents born. We found significant differences between the values of red blood cells (RBC), leucocytes, hematocrit, and hemoglobin. There was a difference of 27% more in RBC, 3% at hematocrit, and 0.4 g at hemoglobin in the high-altitude cohort. The leucocyte difference is 1270 cells/µl, which means a difference of 6%. At high-altitude settings, the mean pH was lower than normal values and pO2, pCO2, and HCO3. High-altitude newborns showed RBC of > 4,500,000 cells/µl; leukocytes > 19,000; pO2 ≤ 72 mm Hg; hemoglobin > 17.50 g/dl; and hematocrit > 54%. Both cohorts showed physiological changes of transition to extrauterine life. We observed higher polycythemia, respiratory acidosis, and hypoxemia among high-altitude newborns. High-altitude setting intensifies the physiological changes in hematological and arterial blood gases parameters.

Type
Original Article
Copyright
© The Author(s), 2021. Published by Cambridge University Press in association with International Society for Developmental Origins of Health and Disease

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Moore, LG, Niermeyer, S, Zamudio, S. Human adaptation to high altitude: regional and life-cycle perspectives. Am J Phys Anthropol. 1998; 27, 2564. DOI 10.1002/(sici)1096-8644(1998)107:27+<25::aid-ajpa3>3.0.co;2-l.3.0.CO;2-L>CrossRefGoogle ScholarPubMed
González-Andrade, F. High altitude as a cause of congenital heart defects: a medical hypothesis rediscovered in Ecuador. High Alt Med Biol. 2020; 21(2), 126134. DOI 10.1089/ham.2019.0110.CrossRefGoogle ScholarPubMed
Pinotti, T, Bergström, A, Geppert, M, et al. Y chromosome sequences reveal a short Beringian standstill, rapid expansion, and early population structure of native American founders. Curr Biol. 2019; 29(1), 149157.e3. DOI 10.1016/j.cub.2018.11.029.CrossRefGoogle Scholar
Azad, P, Stobdan, T, Zhou, D, et al. High-altitude adaptation in humans: from genomics to integrative physiology. J Mol Med (Berl). 2017; 95(12), 12691282. DOI 10.1007/s00109-017-1584-7.CrossRefGoogle ScholarPubMed
Hillman, NH, Kallapur, SG, Jobe, AH. Physiology of transition from intrauterine to extrauterine life. Clin Perinatol. 2012; 39(4), 769783. DOI 10.1016/j.clp.2012.09.009.CrossRefGoogle ScholarPubMed
Franzese, A, Salerno, M, Argenziano, A, Buongiovanni, C, Limauro, R, Tenore, A. Anemia in infants with congenital hypothyroidism diagnosed by neonatal screening. J Endocrinol Invest. 1996; 19(9), 613619. DOI 10.1007/BF03349027.CrossRefGoogle ScholarPubMed
Niermeyer, S, Shaffer, EM, Thilo, E, Corbin, C, Moore, LG. Arterial oxygenation and pulmonary arterial pressure in healthy newborns and infants at high altitude. J Pediatr. 1993; 123(5), 767772. DOI 10.1016/s0022-3476(05)80857-1.CrossRefGoogle ScholarPubMed
Niermeyer, S. Cardiopulmonary transition in the high altitude infant. High Alt Med Biol. 2003; 4(2), 225239. DOI 10.1089/152702903322022820.CrossRefGoogle ScholarPubMed
Vargas, M, Vargas, E, Julian, CG, et al. Determinants of blood oxygenation during pregnancy in Andean and European residents of high altitude. Am J Physiol Regul Integr Comp Physiol. 2007; 293(3), R1303R1312. DOI 10.1152/ajpregu.00805.2006.CrossRefGoogle ScholarPubMed
Swanson, JR, Sinkin, RA. Transition from fetus to newborn. Pediatr Clin North Am. 2015; 62(2), 329343. DOI 10.1016/j.pcl.2014.11.002.CrossRefGoogle Scholar
Finnemore, A, Groves, A. Physiology of the fetal and transitional circulation. Semin Fetal Neonatal Med. 2015; 20(4), 210216. DOI 10.1016/j.siny.2015.04.003.CrossRefGoogle ScholarPubMed
Tan, C, Lewandowski, AJ. The transitional heart: from early embryonic and fetal development to neonatal life. Fetal Diagn Ther. 2020; 47(5), 373386. DOI 10.1159/000501906.CrossRefGoogle ScholarPubMed
Morton, SU, Brodsky, D. Fetal physiology and the transition to extrauterine life. Clin Perinatol. 2016; 43(3), 395407. DOI 10.1016/j.clp.2016.04.001.CrossRefGoogle ScholarPubMed
Morgan, MC, Maina, B, Waiyego, M, et al. Oxygen saturation ranges for healthy newborns within 24 hours at 1800 m. Arch Dis Child Fetal Neonatal Ed. 2017; 102(3), F266F268. DOI 10.1136/archdischild-2016-311813.CrossRefGoogle ScholarPubMed
Fajersztajn, L, Veras, MM. Hypoxia: from placental development to fetal programming. Birth Defects Res. 2017; 109(17), 13771385. DOI 10.1002/bdr2.1142.CrossRefGoogle ScholarPubMed
Martínez, JI, Román, EM, Alfaro, EL, Grandi, C, Dipierri, JE. Geographic altitude and prevalence of underweight, stunting, and wasting in newborns with the INTERGROWTH-21st standard. J Pediatr. 2019; 95(3), 366373. DOI 10.1016/j.jped.2018.03.007.CrossRefGoogle ScholarPubMed
Li, C, Li, X, Liu, J, et al. Investigation of the differences between the Tibetan and Han populations in the hemoglobin-oxygen affinity of red blood cells and the adaptation to high-altitude environments. Hematology. 2018; 23(5), 309313. DOI 10.1080/10245332.2017.1396046.CrossRefGoogle Scholar
Gassmann, M, Mairbäurl, H, Livshits, L, et al. The increase in hemoglobin concentration with altitude varies among human populations. Ann NY Acad Sci. 2019; 1450(1), 204220. DOI 10.1111/nyas.14136.Google ScholarPubMed
Moore, LG, Niermeyer, S, Zamudio, S. Human adaptation to high altitude: regional and life-cycle perspectives. Am J Phys Anthropol. 1998; (Suppl 27), 2564. DOI 10.1002/(sici)1096-8644(1998)107:27+<25::aid-ajpa3>3.0.co;2-l.3.0.CO;2-L>CrossRefGoogle ScholarPubMed
Mouradian, GC Jr, Lakshminrusimha, S, Konduri, GG. Perinatal hypoxemia, and oxygen sensing. Compr Physiol. 2021; 11(2), 16531677. DOI 10.1002/cphy.c190046.CrossRefGoogle ScholarPubMed
Stembridge, M, Ainslie, PN, Donnelly, J, et al. Cardiac structure and function in adolescent Sherpa; effect of habitual altitude and developmental stage. Am J Physiol Heart Circ Physiol. 2016; 310(6), H740H746. DOI 10.1152/ajpheart.00938.2015.CrossRefGoogle ScholarPubMed
Haase, VH. Hypoxic regulation of erythropoiesis and iron metabolism. Am J Physiol Renal Physiol. 2010; 299(1), F1F13. DOI 10.1152/ajprenal.00174.2010.CrossRefGoogle ScholarPubMed
Postigo, L, Heredia, G, Illsley, NP, et al. Where the O2 goes to preservation of human fetal oxygen delivery and consumption at high altitude. J Physiol. 2009; 587(3), 693708. DOI 10.1113/jphysiol.2008.163634.CrossRefGoogle ScholarPubMed
Gragasin, FS, Ospina, MB, Serrano-Lomelin, J, et al. Maternal and cord blood hemoglobin as determinants of placental weight: a cross-sectional study. J Clin Med. 2021; 10(5), 997. DOI 10.3390/jcm10050997.CrossRefGoogle ScholarPubMed
Sáenz, K, Narváez, L, Cruz, M. Hematological reference values in Ecuadorian highlands population established using the Sysmex XE-2100 analyzer. [Valores de referencia hematológicos en población de tierras altas ecuatorianas establecidas con el uso del analizador Sysmex XE-2100]. Rev Fac Cien Med (Quito). 2009; 34, 3140, https://revistadigital.uce.edu.ec/index.php/CIENCIAS_MEDICAS/article/view/1051.Google Scholar