Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-27T23:37:52.312Z Has data issue: false hasContentIssue false

Acoustic resonance mechanism for axisymmetric screech modes of underexpanded jets impinging on an inclined plate

Published online by Cambridge University Press:  26 January 2023

Xiangru Li
Affiliation:
Department of Engineering Mechanics, School of Aerospace Engineering, Tsinghua University, Beijing 100084, PR China Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, PR China
Xuecheng Wu
Affiliation:
Department of Engineering Mechanics, School of Aerospace Engineering, Tsinghua University, Beijing 100084, PR China Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, PR China
Luhan Liu
Affiliation:
Department of Engineering Mechanics, School of Aerospace Engineering, Tsinghua University, Beijing 100084, PR China Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, PR China
Xiwen Zhang
Affiliation:
Department of Engineering Mechanics, School of Aerospace Engineering, Tsinghua University, Beijing 100084, PR China Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, PR China
Pengfei Hao
Affiliation:
Department of Engineering Mechanics, School of Aerospace Engineering, Tsinghua University, Beijing 100084, PR China Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, PR China
Feng He*
Affiliation:
Department of Engineering Mechanics, School of Aerospace Engineering, Tsinghua University, Beijing 100084, PR China Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, PR China
*
Email address for correspondence: hefeng@tsinghua.edu.cn

Abstract

In this paper, the acoustic resonance mechanism for different axisymmetric screech modes of the underexpanded jets that impinge on an inclined plate is investigated experimentally. The ideally expanded Mach number of jets ($M_j$) ranges from 1.05 to 1.56. The nozzle-to-plate distance at the jet axis and the impingement angle are respectively set as 5.0$D$ and $30^{\circ }$, where $D$ is the nozzle exit diameter. The acoustic results show that the $M_j$ range for the A2 screech mode of impinging jets is broader than that of underexpanded free jets, and a new axisymmetric screech mode A3 appears. With the increase of $M_j$, the effect of the impinging plate on the shock cell structures of jets becomes obvious gradually, and the second suboptimal peaks are evident in the axial wavenumber spectra of mean shock structures. The coherent flow structures at screech frequencies are extracted from time-resolved schlieren images via the spectral proper orthogonal decomposition (SPOD). The axial wavenumber spectra of the selected SPOD modes suggest that the A1, A2 and A3 screech modes are respectively closed by the guided jet modes that are energized by the interactions between the Kelvin–Helmholtz wavepacket and the first three shock wavenumber peaks. The upstream- and downstream-propagating waves that constitute the screech feedback loop are analysed by applying wavenumber filters to the wavenumber spectra of SPOD modes. The frequencies of these three screech modes can be predicted by the phase constraints between the nozzle exit and the rear edge of the third shock cell. For the A3 mode, the inclined plate invades the third shock cell with the increase of $M_j$, and the phase constraint cannot be satisfied at the lower side of the jets, which leads the A3 mode to fade away. The present results suggest that external boundaries can modulate the frequency and mode of jet screech by changing the axial spacings of shock cells.

Type
JFM Papers
Copyright
© The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Akamine, M., Nakanishi, Y., Okamoto, K., Teramoto, S., Okunuki, T. & Tsutsumi, S. 2015 Acoustic phenomena from correctly expanded supersonic jet impinging on inclined plate. AIAA J. 53 (7), 20612067.10.2514/1.J053953CrossRefGoogle Scholar
André, B., Castelain, T. & Bailly, C. 2014 Investigation of the mixing layer of underexpanded supersonic jets by particle image velocimetry. Intl J. Heat Fluid Flow 50, 188200.10.1016/j.ijheatfluidflow.2014.08.004CrossRefGoogle Scholar
Barone, M.F. & Lele, S.K. 2005 Receptivity of the compressible mixing layer. J. Fluid Mech. 540, 301335.10.1017/S0022112005005884CrossRefGoogle Scholar
Berland, J., Bogey, C. & Bailly, C. 2007 Numerical study of screech generation in a planar supersonic jet. Phys. Fluids 19 (7), 075105.10.1063/1.2747225CrossRefGoogle Scholar
Bogey, C. & Gojon, R. 2017 Feedback loop and upwind-propagating waves in ideally expanded supersonic impinging round jets. J. Fluid Mech. 823, 562591.10.1017/jfm.2017.334CrossRefGoogle Scholar
Brehm, C., Housman, J.A. & Kiris, C.C. 2016 Noise generation mechanisms for a supersonic jet impinging on an inclined plate. J. Fluid Mech. 797, 802850.10.1017/jfm.2016.244CrossRefGoogle Scholar
Davies, M.G. 1962 Tones from a choked axisymmetric jet II. The self excited loop and mode of oscillation. Acustica 12, 267277.Google Scholar
Edgington-Mitchell, D. 2019 Aeroacoustic resonance and self-excitation in screeching and impinging supersonic jets – a review. Intl J. Aeroacoust. 18 (2–3), 118188.10.1177/1475472X19834521CrossRefGoogle Scholar
Edgington-Mitchell, D., Jaunet, V., Jordan, P., Towne, A., Soria, J. & Honnery, D. 2018 Upstream-travelling acoustic jet modes as a closure mechanism for screech. J. Fluid Mech. 855, R1.10.1017/jfm.2018.642CrossRefGoogle Scholar
Edgington-Mitchell, D., Li, X., Liu, N., He, F., Wong, T.Y., Mackenzie, J. & Nogueira, P. 2022 A unifying theory of jet screech. J. Fluid Mech. 945, A8.CrossRefGoogle Scholar
Edgington-Mitchell, D., Wang, T., Nogueira, P., Schmidt, O., Jaunet, V., Duke, D., Jordan, P. & Towne, A. 2021 a Waves in screeching jets. J. Fluid Mech. 913, A7.10.1017/jfm.2020.1175CrossRefGoogle Scholar
Edgington-Mitchell, D., Weightman, J., Lock, S., Kirby, R., Nair, V., Soria, J. & Honnery, D. 2021 b The generation of screech tones by shock leakage. J. Fluid Mech. 908, A46.10.1017/jfm.2020.945CrossRefGoogle Scholar
Gojon, R. & Bogey, C. 2017 Flow structure oscillations and tone production in underexpanded impinging round jets. AIAA J. 55 (6), 17921805.10.2514/1.J055618CrossRefGoogle Scholar
Gojon, R. & Bogey, C. 2019 Effects of the angle of impact on the aeroacoustic feedback mechanism in supersonic impinging planar jets. Intl J. Aeroacoust. 18 (2–3), 258278.10.1177/1475472X18812808CrossRefGoogle Scholar
Gojon, R., Bogey, C. & Marsden, O. 2016 Investigation of tone generation in ideally expanded supersonic planar impinging jets using large-eddy simulation. J. Fluid Mech. 808, 90115.10.1017/jfm.2016.628CrossRefGoogle Scholar
Gojon, R., Bogey, C. & Mihaescu, M. 2018 Oscillation modes in screeching jets. AIAA J. 56 (7), 29182924.CrossRefGoogle Scholar
Henderson, B. 2002 The connection between sound production and jet structure of the supersonic impinging jet. J. Acoust. Soc. Am. 111 (2), 735747.10.1121/1.1436069CrossRefGoogle ScholarPubMed
Henderson, B., Bridges, J. & Wernet, M. 2005 An experimental study of the oscillatory flow structure of tone-producing supersonic impinging jets. J. Fluid Mech. 542, 115137.10.1017/S0022112005006385CrossRefGoogle Scholar
Henderson, B. & Powell, A. 1993 Experiments concerning tones produced by an axisymmetric choked jet impinging on flat plates. J. Sound Vib. 168 (2), 307326.10.1006/jsvi.1993.1375CrossRefGoogle Scholar
Ho, C.-M. & Nosseir, N.S. 1981 Dynamics of an impinging jet. Part 1. The feedback phenomenon. J. Fluid Mech. 105, 119142.CrossRefGoogle Scholar
Jordan, P. & Colonius, T. 2013 Wave packets and turbulent jet noise. Annu. Rev. Fluid Mech. 45, 173195.10.1146/annurev-fluid-011212-140756CrossRefGoogle Scholar
Karami, S., Stegeman, P.C., Ooi, A., Theofilis, V. & Soria, J. 2020 Receptivity characteristics of under-expanded supersonic impinging jets. J. Fluid Mech. 889, A27.10.1017/jfm.2020.63CrossRefGoogle Scholar
Lamont, P.J. & Hunt, B.L. 1980 The impingement of underexpanded, axisymmetric jets on perpendicular and inclined flat plates. J. Fluid Mech. 100 (3), 471511.10.1017/S0022112080001255CrossRefGoogle Scholar
Lessen, M., Fox, J.A. & Zien, H.M. 1965 The instability of inviscid jets and wakes in compressible fluid. J. Fluid Mech. 21 (1), 129143.10.1017/S0022112065000095CrossRefGoogle Scholar
Li, X., Liu, N., Hao, P., Zhang, X. & He, F. 2021 Screech feedback loop and mode staging process of axisymmetric underexpanded jets. Exp. Therm. Fluid Sci. 122, 110323.CrossRefGoogle Scholar
Li, X.-R., Zhang, X.-W., Hao, P.-F. & He, F. 2020 Acoustic feedback loops for screech tones of underexpanded free round jets at different modes. J. Fluid Mech. 902, A17.CrossRefGoogle Scholar
Mancinelli, M., Jaunet, V., Jordan, P. & Towne, A. 2019 Screech-tone prediction using upstream-travelling jet modes. Exp. Fluids 60 (1), 19.10.1007/s00348-018-2673-2CrossRefGoogle Scholar
Mancinelli, M., Jaunet, V., Jordan, P. & Towne, A. 2021 A complex-valued resonance model for axisymmetric screech tones in supersonic jets. J. Fluid Mech. 928, A32.CrossRefGoogle Scholar
Manning, T. & Lele, S. 1998 Numerical simulations of shock–vortex interactions in supersonic jet screech. AIAA Paper 1998-282.CrossRefGoogle Scholar
Mercier, B., Castelain, T. & Bailly, C. 2017 Experimental characterisation of the screech feedback loop in underexpanded round jets. J. Fluid Mech. 824, 202229.CrossRefGoogle Scholar
Mitchell, D.M., Honnery, D.R. & Soria, J. 2012 The visualization of the acoustic feedback loop in impinging underexpanded supersonic jet flows using ultra-high frame rate schlieren. J. Vis. 15 (4), 333341.10.1007/s12650-012-0139-9CrossRefGoogle Scholar
Nogueira, P.A.S., Jaunet, V., Mancinelli, M., Jordan, P. & Edgington-Mitchell, D. 2022 a Closure mechanism of the A1 and A2 modes in jet screech. J. Fluid Mech. 936, A10.CrossRefGoogle Scholar
Nogueira, P.A.S., Jordan, P., Jaunet, V., Cavalieri, A.V.G., Towne, A. & Edgington-Mitchell, D. 2022 b Absolute instability in shock-containing jets. J. Fluid Mech. 930, A10.10.1017/jfm.2021.887CrossRefGoogle Scholar
Nogueira, P.A.S., Self, H.W.A., Towne, A. & Edgington-Mitchell, D. 2022 c Wave-packet modulation in shock-containing jets. Phys. Rev. Fluids 7 (7), 074608.10.1103/PhysRevFluids.7.074608CrossRefGoogle Scholar
Nonomura, T., Goto, Y. & Fujii, K. 2011 Aeroacoustic waves generated from a supersonic jet impinging on an inclined flat plate. Intl J. Aeroacoust. 10 (4), 401425.CrossRefGoogle Scholar
Nonomura, T., Honda, H., Nagata, Y., Yamamoto, M., Morizawa, S., Obayashi, S. & Fujii, K. 2016 Plate-angle effects on acoustic waves from supersonic jets impinging on inclined plates. AIAA J. 54 (3), 816827.CrossRefGoogle Scholar
Pack, D.C. 1950 A note on Prandtl's formula for the wave-length of a supersonic gas jet. Q. J. Mech. Appl. Maths 3 (2), 173181.CrossRefGoogle Scholar
Panda, J. 1999 An experimental investigation of screech noise generation. J. Fluid Mech. 378, 7196.CrossRefGoogle Scholar
Powell, A. 1953 On the mechanism of choked jet noise. Proc. Phys. Soc. 66 (12), 1039.10.1088/0370-1301/66/12/306CrossRefGoogle Scholar
Powell, A., Umeda, Y. & Ishii, R. 1992 Observations of the oscillation modes of choked circular jets. J. Acoust. Soc. Am. 92 (5), 28232836.10.1121/1.404398CrossRefGoogle Scholar
Raman, G. 1999 Supersonic jet screech: half-century from Powell to the present. J. Sound Vib. 225 (3), 543571.10.1006/jsvi.1999.2181CrossRefGoogle Scholar
Schmid, P.J. 2010 Dynamic mode decomposition of numerical and experimental data. J. Fluid Mech. 656, 528.CrossRefGoogle Scholar
Schmidt, O.T. & Colonius, T. 2020 Guide to spectral proper orthogonal decomposition. AIAA J. 58 (3), 10231033.10.2514/1.J058809CrossRefGoogle Scholar
Shariff, K. & Manning, T.A. 2013 A ray tracing study of shock leakage in a model supersonic jet. Phys. Fluids 25 (7), 076103.CrossRefGoogle Scholar
Shen, H. & Tam, C.K.W. 2002 Three-dimensional numerical simulation of the jet screech phenomenon. AIAA J. 40 (1), 3341.CrossRefGoogle Scholar
Suzuki, T. & Lele, S.K. 2003 Shock leakage through an unsteady vortex-laden mixing layer: application to jet screech. J. Fluid Mech. 490, 139167.10.1017/S0022112003005214CrossRefGoogle Scholar
Tam, C.K.W. 1995 Supersonic jet noise. Annu. Rev. Fluid Mech. 27 (1), 1743.CrossRefGoogle Scholar
Tam, C.K.W. 2009 Mach wave radiation from high-speed jets. AIAA J. 47 (10), 24402448.CrossRefGoogle Scholar
Tam, C.K.W. & Ahuja, K.K. 1990 Theoretical model of discrete tone generation by impinging jets. J. Fluid Mech. 214, 6787.CrossRefGoogle Scholar
Tam, C.K.W. & Hu, F.Q. 1989 On the three families of instability waves of high-speed jets. J. Fluid Mech. 201, 447483.CrossRefGoogle Scholar
Tam, C.K.W., Parrish, S.A. & Viswanathan, K. 2014 Harmonics of jet screech tones. AIAA J. 52 (11), 24712479.CrossRefGoogle Scholar
Tam, C.K.W., Seiner, J.M. & Yu, J.C. 1986 Proposed relationship between broadband shock associated noise and screech tones. J. Sound Vib. 110 (2), 309321.CrossRefGoogle Scholar
Tam, C.K.W. & Tanna, H.K. 1982 Shock associated noise of supersonic jets from convergent–divergent nozzles. J. Sound Vib. 81 (3), 337358.10.1016/0022-460X(82)90244-9CrossRefGoogle Scholar
Towne, A., Cavalieri, A.V.G., Jordan, P., Colonius, T., Schmidt, O., Jaunet, V. & Brès, G.A. 2017 Acoustic resonance in the potential core of subsonic jets. J. Fluid Mech. 825, 11131152.10.1017/jfm.2017.346CrossRefGoogle Scholar
Towne, A., Schmidt, O.T. & Colonius, T. 2018 Spectral proper orthogonal decomposition and its relationship to dynamic mode decomposition and resolvent analysis. J. Fluid Mech. 847, 821867.CrossRefGoogle Scholar
Weightman, J.L., Amili, O., Honnery, D., Edgington-Mitchell, D. & Soria, J. 2019 Nozzle external geometry as a boundary condition for the azimuthal mode selection in an impinging underexpanded jet. J. Fluid Mech. 862, 421448.10.1017/jfm.2018.957CrossRefGoogle Scholar
Weightman, J.L., Amili, O., Honnery, D., Edgington-Mitchell, D.M. & Soria, J. 2017 a On the effects of nozzle lip thickness on the azimuthal mode selection of a supersonic impinging flow. AIAA Paper 2017-3031.CrossRefGoogle Scholar
Weightman, J.L., Amili, O., Honnery, D., Soria, J. & Edgington-Mitchell, D. 2017 b An explanation for the phase lag in supersonic jet impingement. J. Fluid Mech. 815, R1.CrossRefGoogle Scholar