Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-17T02:54:12.674Z Has data issue: false hasContentIssue false

An alternative approach to linear and nonlinear stability calculations at finite Reynolds numbers

Published online by Cambridge University Press:  20 April 2006

F. T. Smith
Affiliation:
Department of Mathematics, University College London WC1E 6BT
D. Papageorgiou
Affiliation:
Department of Mathematics, University College London WC1E 6BT
J. W. Elliott
Affiliation:
Department of Mathematics, University College London WC1E 6BT Present address: Department of Applied Mathematics, The University, Hull HU6 7RX.

Abstract

An extended version of the interactive boundary-layer approach which has been used widely in steady-flow calculations is applied here to the linear and nonlinear stability properties of channel flows and boundary layers in the moderate-to-large Reynolds-number regime. This is the regime of most practical concern. First, for linear stability the agreement found between the interactive approach and Orr-Sommerfeld results remains fairly close even at Reynolds numbers as low as about $\frac{1}{10}$ of the critical value for plane Poiseuille flow, or $\frac{1}{5}$ for Blasius flow. Secondly, nonlinear unsteady calculations and comparisons with full solutions obtained by enlarging the same method are also presented. Overall the work suggests that, at the finite Reynolds numbers where real interest lies, the dominant physical processes of instability in channel flow and boundary layers are of boundary-layer form, with interaction, and it suggests also an alternative numerical technique for determining those processes. This alternative technique uses the interactive boundary-layer method as the central means for obtaining full unsteady Navier-Stokes solutions.

Type
Research Article
Copyright
© 1984 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bodonyi, R. J. & Smith, F. T. 1981 Proc. R. Soc. Lond. A 375, 65.
Bodonyi, R. J., Smith, F. T. & Gajjar, J. 1983 IMA J. Appl. Maths 30, 1.
Davis, R. T. & Rubin, S. G. 1980 Comp. Fluids 8, 101.
Davis, R. T. & Werle, M. J. 1982 In Proc. Conf. Numer. Phys. Aspects of Aerodyn. Flows, California State University, Long Beach, 1981 (ed. T. Cebeci), Springer.
Dennis, S. C. R. & Hudson, J. D. 1978 In Proc. 1st Intl Conf. on Numer. Meth. in Laminar and Turbulent Flow, University College, Swansea. Pentech.
Drazin, P. G. & Reid, W. H. 1981 Hydrodynamic Stability. Cambridge University Press.
Fornberg, B. 1980 J. Fluid Mech. 98, 819.
Hall, P. & Smith, F. T. 1982 Stud. Appl. Maths 66, 241.
Lin, C. C. 1955 Theory of Hydrodynamic Stability. Cambridge University Press.
Messiter, A. F. 1979 In Proc. 8th US Natl Appl. Maths Congr., Los Angeles.
Patera, A. T. & Orszag, S. A. 1981 J. Fluid Mech. 112, 467 (see also Phys. Rev. Lett. 45 (1980), 989 and Proc. 7th Intl Conf. Numer. Meth. Fluid Dyn., Paper 141, June 1980, Stanford).
Reid, W. H. 1965 In Basic Developments in Fluid Dynamics (ed. M. Holt), vol. 1, p. 249. Academic.
Rubin, S. G. 1982 Lect. Notes for Series on Computational Fluid Dyn., von Kármán Inst. for Fluid Dyn., Brussels, March/April 1982.
Schlichting, H. 1933 Nachr. Ges. Wiss. Gött., Math.-Phys. K1. 181, 208.
Smith, F. T. 1979a Proc. R. Soc. Lond. A 366, 91 (and A 368, 573).
Smith, F. T. 1979b Mathematika 26, 211.
Smith, F. T. 1981 J. Fluid Mech. 113, 407.
Smith, F. T. 1982 IMA J. Appl. Maths 28, 207.
Smith, F. T. & Bodonyi, R. J. 1982 J. Fluid Mech. 118, 165.
Smith, F. T. & Gajjar, J. 1984 J. Fluid Mech. 144, 191.
Stewartson, K. 1981 SIAM Rev. 23, 308.
Stewartson, K. & Stuart, J. T. 1971 J. Fluid Mech. 48, 529.
Stuart, J. T. 1960 J. Fluid Mech. 9, 352.
Stuart, J. T. 1971 Ann. Rev. Fluid Mech. 3, 347.
Tollmien, W. 1929 Nachr. Ges. Wiss. Gött., Math.-Phys. Kl. 22, 44 (transl. NACA Tech. Memo. 609).
Watson, J. 1960 J. Fluid Mech. 9, 371.