Published online by Cambridge University Press: 20 April 2006
An extended version of the interactive boundary-layer approach which has been used widely in steady-flow calculations is applied here to the linear and nonlinear stability properties of channel flows and boundary layers in the moderate-to-large Reynolds-number regime. This is the regime of most practical concern. First, for linear stability the agreement found between the interactive approach and Orr-Sommerfeld results remains fairly close even at Reynolds numbers as low as about $\frac{1}{10}$ of the critical value for plane Poiseuille flow, or $\frac{1}{5}$ for Blasius flow. Secondly, nonlinear unsteady calculations and comparisons with full solutions obtained by enlarging the same method are also presented. Overall the work suggests that, at the finite Reynolds numbers where real interest lies, the dominant physical processes of instability in channel flow and boundary layers are of boundary-layer form, with interaction, and it suggests also an alternative numerical technique for determining those processes. This alternative technique uses the interactive boundary-layer method as the central means for obtaining full unsteady Navier-Stokes solutions.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.