Article contents
An experimental investigation of the effects of compressibility on a turbulent reacting mixing layer
Published online by Cambridge University Press: 10 February 1998
Abstract
Experiments were conducted to investigate the effect of compressibility on turbulent reacting mixing layers with moderate heat release. Side- and plan-view visualizations of the reacting mixing layers, which were formed between a high-speed high-temperature vitiated-air stream and a low-speed ambient-temperature hydrogen stream, were obtained using a combined OH/acetone planar laser-induced fluorescence imaging technique. The instantaneous images of OH provide two-dimensional maps of the regions of combustion, and similar images of acetone, which was seeded into the fuel stream, provide maps of the regions of unburned fuel. Two low-compressibility (Mc=0.32, 0.35) reacting mixing layers with differing density ratios and one high-compressibility (Mc=0.70) reacting mixing layer were studied. Higher average acetone signals were measured in the compressible mixing layer than in its low-compressibility counterpart (i.e. same density ratio), indicating a lower entrainment ratio. Additionally, the compressible mixing layer had slightly wider regions of OH and 50% higher OH signals, which was an unexpected result since lowering the entrainment ratio had the opposite effect at low compressibilities. The large-scale structural changes induced by compressibility are believed to be primarily responsible for the difference in the behaviour of the high- and low-compressibility reacting mixing layers. It is proposed that the coexistence of broad regions of OH and high acetone signals is a manifestation of a more biased distribution of mixture compositions in the compressible mixing layer. Other mechanisms through which compressibility can affect the combustion are discussed.
- Type
- Research Article
- Information
- Copyright
- © 1998 Cambridge University Press
- 33
- Cited by