Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-28T02:54:12.438Z Has data issue: false hasContentIssue false

An investigation of the topography and motion of the turbulent interface

Published online by Cambridge University Press:  29 March 2006

S. T. Paizis
Affiliation:
Department of Mechanics and Materials Science, The Johns Hopkins University
W. H. Schwarz
Affiliation:
Department of Mechanics and Materials Science, The Johns Hopkins University

Abstract

The sharp interface which exists in unbounded turbulent shear flows was studied using a linear array of twenty hot-wire probes. The probe arrangement was such that the location of the interface could be monitored instantaneously. The particular flow examined was a two-dimensional turbulent wall jet. It was found that the interface is a highly contorted surface which exhibits a significant amount of folding. Quantitative methods for characterizing this behaviour are presented, together with pertinent measurements. In addition, measurements of the mean surface area of the interface, and space-time corrrelations of the width of the turbulence were obtained. The latter were used to find characteristic scales and convection velocities of the interface.

Type
Research Article
Copyright
© 1974 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Blackwelder, R. F. & Kovasznay, L. S. G. 1972a J. Fluid Mech. 53, 61.
Blackwelder, R. F. & Kovasznay, L. S. G. 1972b Phys. Fluids, 15, 1545.
Coles, D. & Van Atta, C. w. 1967 Phys. Fluids Suppl. 10, 120.
Corrsin, B. 1943 N.A.C.A. Wartime Rep. W-94.
Corrsin, S. & Kistler, A. L. 1955 N.A.C.A. Rep. no. 1244.
Corrsin, S. & Phillips, O. M. 1961 J. Soc. Indust. Appl. Math. 9, 395.
Favre, A., Gaviglio, J. & Dumas, R. 1967 Phys. Fluids Suppl. 10, 138.
Fiedler, H. & Head, M. R. 1966 J. Fluid Mech. 25, 719.
Grant, H. L. 1958 J. Fluid Mech. 4, 149.
Head, M. R. 1958 Aero. Res. Counc. R. & M. no. 3152.
Kaplan, R. E. & Laufer, J. 1969 Proc. 12th Int. Cong. on. Appl. Mech., p. 236. Springer.
Kohan, S. M. 1968 Ph.D. dissertation, Stanford University.
Kovasznay, L. S. G. 1971 Agard-GP-93.
Kovasznay, L. S. G., Kibens, V. & Blackwelder, R. F. 1970 J. Fluid Mech. 41, 283.
Longuet-Higgins, M. S. 1956 Proc. Camb. Phil. Soc. 52, 234.
Longuet-Higgins, M. S. 1957 Phil. Trans. A249, 321.
Lumley, J. L. 1964 J. Math. Phys. 5, 1198.
Lumley, J. L. 1970 Stochastic Tools in Turbulence, Academic.
Lundgren, T. S. 1970 On the structure of the turbulent interface. Boeing Symp. On Turbulence.
Mathieu, J. 1971 Von Kármám Institute for Fluid Dynamics, Lecture Series 36.
Mobbs, F. R. 1967 J. Fluid Mech. 33, 227.
Moffatt, H. K. 1965 Stanford University, Sudaer 242.
Nee, V. W. & Kovasznay, L. S. G. 1969 Phys. Fluids, 12, 473.
Paizis, S. T. 1972 Ph.D. dissertation, The Johns Hopkins University.
Papoulis, A. 1965 Probability, Random Variables, and Stochastic Processes. MoGraw-Hill.
Phillips, O. M. 1955 Proc. Camb. Phil. Soc. 51, 220.
Phillips, O. M. 1972 J. Fluid Mech. 51, 97.
Reynolds, W. C. 1972 J. Fluid Mech. 54, 481.
Rice, O. 1944 Bell Syst. Tech. J. 23, 282.
Rice, O. 1945 Bell Syst. Tech. J. 24, 46.
Saffman, P. G. 1970 Proc. Roy. Soc. A317, 417.
Schwarz, W. H. & Cosart, W. P. 1961 J. Fluid Mech. 10, 418.
Townsend, A. A. 1948 Australian J. Sci. Res. 1, 161.
Townsend, A. A. 1949 Australian J. Sci. Res. 2, 451.
Townsend, A. A. 1956 The Structure of Turbulent Shear Flow. Cambridge University Press.
Townsend, A. A. 1966 J. Fluid Mech. 26, 689.
Townsend, A. A. 1970 J. Fluid Mech. 41, 13.
Wygnanski, I. & Fiedler, H. E. 1969 J. Fluid Mech. 38, 577.
Wygnanski, I. & Fiedler, H. E. 1970 J. Fluid Mech. 41, 327.