Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-27T18:27:34.079Z Has data issue: false hasContentIssue false

Axisymmetric vortex breakdown with and without temperature effects in a container with a rotating lid

Published online by Cambridge University Press:  21 April 2006

Hans J. Lugt
Affiliation:
David W. Taylor Naval Ship Research and Development Center, Bethesda, MD 20084, USA
Michel Abboud
Affiliation:
Institut für Strömungslehre und Strömungsmaschinen, Universität Karlsruhe, 7500 Karlsruhe, West Germany

Abstract

A flow circulation in a closed circular-cylindrical container is produced by a rotating lid. After a transient phase from an initial state at rest a steady-flow situation is reached for a certain parameter range. In a subspace of this parameter range an undulating meridional flow occurs that may exhibit at the axis of rotation one or several separation bubbles which are interpreted as vortex breakdown. Numerical calculations on the basis of the Navier-Stokes equations for incompressible homogeneous and Boussinesq fluids enable the study of the influence of various flow parameters on the properties of these separation bubbles. The parameters varied are the Reynolds, Prandtl, Rayleigh, and Eckert numbers together with the ratio of height to radius of the container. The numerical results are in good agreement with experiments performed by Vogel, Ronnenberg, and Escudier. The stability of the fluid motions in these experiments with respect to non-axisymmetric disturbances strongly suggests that the corresponding axisymmetric solutions of the Navier-Stokes equations are stable configurations.

Type
Research Article
Copyright
© 1987 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Batchelor, G. K. 1967 An Introduction to Fluid Dynamics. Cambridge University Press.
BertelÀ, M. 1979 A non-isothermal fluid rotating in a finite cylindrical container. Proc. 1st Intl Conf. on Numerical Methods in Thermal Problems (ed. R. W. Lewis & K. Morgan), p. 279.
BertelÀ, M. & Gori, F. 1982 Laminar flow in cylindrical container with a rotating cover. Trans ASME I: J. Fluids Engng 104, 31Google Scholar
Bossel, H. H. 1973 Swirling flows in streamtubes of variable cross section. AIAA J. 11, 1161.Google Scholar
Bretherton, F. P., Carrier, G. F. & Longuet-Higgins, M. S. 1966 Report on the I.U.T.A.M. symposium on rotating fluid systems. J. Fluid Mech. 26, 393.Google Scholar
Dorfman, L. A. & Romanenko, Y. B. 1966 Flow of viscous fluid in a cylindrical vessel with a rotating cover. Izv. Acad. Nauk. SSSR, Mek. Zhid. i Gaza 1, 63.Google Scholar
Escudier, M. P. 1984 Observations of the flow produced in a cylindrical container by a rotating endwall. Exp. Fluids 2, 189.Google Scholar
Escudier, M. P. & Zehnder, N. 1982 Vortex-flow regimes. J. Fluid Mech. 115, 105.Google Scholar
Faler, J. H. & Leibovich, S. 1977 Disrupted states of vortex flows and vortex breakdown. Phys. Fluids 20, 1385.Google Scholar
Grabowski, W. J. & Berger, S. A. 1976 Solutions of the Navier—Stokes equations for vortex breakdown. J. Fluid Mech. 75, 525.Google Scholar
Gray, D. D. & Giorgini, A. 1976 The validity of the Boussinesq approximation for liquids and gases. Intl J. Heat Mass Transfer 19, 545.Google Scholar
Grohne, D. 1956 Über die laminare Strömung in einer kreiszylindrischen Dose mit rotierendem Deckel. Nachr. Akad. Wiss. Göttingen, Math.-Phys. Kl IIa (Nr. 1), 263.
Leibovich, S. 1978 The structure of vortex breakdown. Ann. Rev. Fluid Mech. 10, 221.Google Scholar
Leibovich, S. 1984 Vortex stability and breakdown: survey and extension. AIAA J. 22, 1192.Google Scholar
Lugt, H. J. 1985 Vortex flow and maximum principles. Am. J. Phys. 53, 649.Google Scholar
Lugt, H. J. & Haussling, H. J. 1971 Transient Ekman and Stewartson layers in a rotating tank with a spinning cover. IUTAM Symp. on Unsteady Boundary Layers. p. 1366. Quebec: Laval University Press.
Lugt, H. J. & Haussling, H. J. 1973 Development of flow circulation in a rotating tank. Acta Mech. 18, 255.Google Scholar
Lugt, H. J. & Haussling, H. J. 1982 Axisymmetric vortex breakdown in rotating fluid within a container. Trans. ASME E: J. Appl. Mech. 49, 921Google Scholar
Maxworthy, T. 1972 On the structure of concentrated, columnar vortices. Astron. Acta 17, 363.Google Scholar
Narain, J. P. 1977 Numerical prediction of confined swirling jets. Computers and Fluids 5, 115.Google Scholar
Pao, H. P. 1970 A numerical computation of a confined rotating flow. Trans. ASME E: J. Appl. Mech. 37, 480Google Scholar
Pao, H. P. 1972 Numerical solution of the Navier—Stokes equations for flows in the disk—cylinder system. Phys. Fluids 15, 4.Google Scholar
Randall, J. D. & Leibovich, S. 1973 The critical state: a trapped wave model of vortex breakdown. J. Fluid Mech. 58, 495.Google Scholar
Ronnenberg, B. 1977 Ein selbstjustierendes 3-Komponenten-Laserdoppleranemometer nach dem Vergleichsstrahlverfahren, angewandt für Untersuchungen in einer stationären zylinder-symmetrischen Drehströmung mit einem Rückstromgebiet. Max-Planck-Institut für Strömungsforschung, Göttingen, Bericht 20.
Sarpkaya, T. 1971 Vortex breakdown in swirling conical flows. AIAA J. 9, 1792.Google Scholar
Schmieden, C. 1928 Über den Widerstand einer in einer Flüssigkeit rotierenden Scheibe. Z. Angew. Math. Mech. 8, 460.Google Scholar
Vettin, F. 1857 Meteorologische Untersuchungen. Poggendorfs Ann. der Physik. 102, 246.Google Scholar
Vogel, H. U. 1968 Experimentelle Ergebnisse über die laminare Strömung in einem zylindrischen Gehäuse mit darin rotierender Scheibe. Max-Planck-Institut für Strömungsforschung, Göttingen, Bericht 6.
Wedermeyer, E. 1982 Vortex Breakdown. AGARD-VKI Lecture Series, vol. 121, 9–1.
Wegener, A. 1917 Wind- und Wasserhosen in Europa. Braunschweig: Vieweg.