Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-27T18:03:22.201Z Has data issue: false hasContentIssue false

Characteristics of the flow around conventional and supercritical airfoils

Published online by Cambridge University Press:  20 April 2006

A. Nakayama
Affiliation:
Aerodynamics Research and Technology Department, Douglas Aircraft Company, Long Beach, California 90846

Abstract

Measurements of the mean and fluctuating velocities have been obtained with pressure and hot-wire probes in the attached boundary layers and wakes of two airfoil models at a low Mach number. The first model is a conventional airfoil at zero incidence and the second an advanced supercritical airfoil at an angle of attack of 4°. The mean-flow and Reynolds-stress data and related quantities are presented with emphasis on the trailing-edge region. The results indicate that the flow around the conventional airfoil is a minor perturbation of a symmetric flat-plate flow with small wake curvature and weak viscous–inviscid interaction. The flow around the supercritical airfoil is in considerable contrast with strong streamwise pressure gradients, non-negligible normal pressure gradients, and large surface and streamline curvatures of the trailing-edge flow. The near wake is strongly curved and intense mixing occurs between the retarded upper-surface boundary layer and strongly accelerated lower-surface boundary layer.

Type
Research Article
Copyright
© 1985 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adair, D., Thompson, B. E. & Whitelaw, J. H. 1983 Numerical and Physical Aspects of Aerodynamic Flows II (ed. T. Cebeci), pp. 97112. Springer.
Andreopoulos, J. & Bradshaw, P. 1980 J. Fluid Mech. 100, 639.
Baker, A. J., Yu, J. C., Orzechowski, J. A. & Gatski, T. B. 1982 AIAA J. 20, 51.
Bradshaw, P. 1969 J. Fluid Mech. 36, 177.
Bradshaw, P. 1971 An Introduction to Turbulence and Its Measurement. Pergamon.
Bradshaw, P. 1975 ASME I: J. Fluids Engng 97, 146.Google Scholar
Bradshaw, P., Ferriss, D. H. & Atwell, N. P. 1967 J. Fluid Mech. 28, 593.
De Brederode, V. & Bradshaw, P. 1978 ASME I: J. Fluids Engng 100, 91.Google Scholar
Chevray, R. & Kovasznay, L. S. G. 1969 AIAA J. 1, 1641.
Cleary, J. W., Viswanath, P. R., Horstman, C. C. & Seegmiller, H. C. 1980 AIAA Paper 80–1396.
Deiwert, G. S. 1978 NASA TM 78581.
Finnigan, J. J. 1983 J. Fluid Mech. 130, 241.
Hah, C. & Lakshiminarayana, B. 1982 J. Fluid Mech. 115, 251.
Johnson, D. A. & Spaid, F. 1983 J. Aircraft 20, 298.
Melnik, R. E., Chow, R. & Mead, H. R. 1977 AIAA Paper 77–680.
Nakayama, A. 1983 Numerical and Physical Aspects of Aerodynamic Flows II (ed. T. Cebeci), pp. 233255. Springer.
Patel, V. C. 1965 J. Fluid Mech. 23, 185.
Patel, V. C. & Scheuerer, G. 1982 AIAA J. 20, 900.
Perry, A. E. & Schofield, W. H. 1973 Phys. Fluids 16, 2068.
Pope, S. B. & Whitelaw, J. H. 1976 J. Fluid Mech. 73, 9.
Pot, P. J. 1979 Proc. 2nd Conf. on Turbulent Shear Flows, Imperial College, London.
Ramaprian, B. E., Patel, V. C. & Sastry, M. S. 1982 AIAA J. 20, 1228.
Simpson, R. L., Chew, Y.-T. & Shivaprasad, B. G. 1981a J. Fluid Mech. 113, 23.
Simpson, R. L., Chew, Y.-T. & Shivaprasad, B. G. 1981b J. Fluid Mech. 113, 53.
Simpson, R. L., Strickland, J. H. & Barr, P. W. 1977 J. Fluid Mech. 79, 553.
So, R. M. C. & Mellor, G. L. 1973 J. Fluid Mech. 60, 43.
So, R. M. C. & Mellor, G. L. 1975 Aero. Quart. 16, 25.
Spaid, F. W. & Hakkinen, R. J. 1977 J. Appl. Math. Phys. 28, 941.
Townsend, A. A. 1975 The Structure of Turbulent Shear Flow, 2nd edn. Cambridge University Press.
Viswanath, P. R. & Brown, J. L. 1983 AIAA J. 21, 801.
Viswanath, P. R., Clearly, J. W., Seegmiller, H. C. & Horstman, C. C. 1979 AIAA Paper 79–1503.
Yu, J. C. 1981 NASA TP-1845.
Wadcock, A. J. 1980 NASA CR 3283.
Wu, J. C. & Gulcat, U. 1981 AIAA J. 19, 20.