Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-14T00:11:41.836Z Has data issue: false hasContentIssue false

A comparative assessment of spectral closures as applied to passive scalar diffusion

Published online by Cambridge University Press:  20 April 2006

J. R. Herring
Affiliation:
National Center for Atmospheric Research, Boulder, Colorado 80307
D. Schertzer
Affiliation:
National Center for Atmospheric Research, Boulder, Colorado 80307 Permanent address: Direction de la Météorologie, Paris.
M. Lesieur
Affiliation:
National Center for Atmospheric Research, Boulder, Colorado 80307 Permanent address: Institut de Mécanique de Grenoble, Université de Grenoble.
G. R. Newman
Affiliation:
National Center for Atmospheric Research, Boulder, Colorado 80307 Permanent address: AVCO Systems Division, 201 Lowell Street, Wilmington, Massachusetts 01887.
J. P. Chollet
Affiliation:
National Center for Atmospheric Research, Boulder, Colorado 80307 Permanent address: Institut de Mécanique de Grenoble, Université de Grenoble.
M. Larcheveque
Affiliation:
National Center for Atmospheric Research, Boulder, Colorado 80307 Permanent address: Laboratoire de Météorologie Dynamique, Paris.

Abstract

We compare - both analytically and numerically – two related spectral (≡ two-point) closures for the problem of the decay of temperature fluctuations convected by isotropic turbulence. The methods are the test-field model (TFM) (Kraichnan 1971; Newman & Herring 1979) and the eddy-damped quasinormal Markovian (ENQNM) approximation (Orszag 1974; Lesieur & Schertzer 1978). We show that EDQNM may be regarded as a rational approximation to, and simplification of, the TFM, except at small wavenumbers, where an additional eddy-dissipative term is needed to produce satisfactory results for the former. We consider three available methods for determining the relaxation timescales: (i) comparison with experiments, (ii) comparison with the direct-interaction approximation (DIA) in thermal equilibrium, and (iii) comparison with DIA at very small wavenumber, where it is believed to represent the dynamics properly. Comparison with both large Reynolds number and wind-tunnel Reynolds numbers is presented. For the latter, we discuss the relationship of the present theoretical results to the experiments of Warhaft & Lumley (1978) and Sreenivasan et al. (1980), and to the theoretical analysis of Corrsin (1964), Kerr & Nelkin (1980) and Antonopolos-Domis (1981).

Type
Research Article
Copyright
© 1982 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

André, J. C. & Lesieur, M. 1977 Influence of helicity on the evolution of isotropic turbulence at high Reynolds number. J. Fluid Mech. 81, 187207.Google Scholar
Antonopolos-Domis, M. A. 1981 Large-eddy simulation of a passive scalar in isotropic turbulence. J. Fluid Mech. 104, 5579.Google Scholar
Basdevant, C., Lesieur, M. & Sadourny, R. 1978 Subgrid-scale modelling of enstrophy transfer in two-dimensional turbulence. J. Atmos. Sci. 35, 10281042.Google Scholar
Batchelor, G. H., Howells, I. D. & Townsend, A. 1959 Small-scale variation of convected quantities like temperature in turbulent fluid. Part 2. The case of large conductivity. J. Fluid Mech. 5, 134139.Google Scholar
Bell, T. L. & Nelkin, M. 1977 Non linear cascade model for fully developed turbulence. Phys. Fluids 20, 345350.Google Scholar
Cambon, C., Jeandel, D. & Mathieu, J. 1980 Spectral modelling of homogeneous nonisotropic turbulence. J. Fluid Mech. 104, 247262.Google Scholar
Champagne, F. H., Friehe, C. A., LaRue, J. C. & Wyngaard, J. C. 1977 Flux measurements, flux estimation techniques and fine-scale turbulence measurements in the unstable surface layer over land. J. Atmos. Sci. 34, 515.Google Scholar
Chollet, J. P. & Lesieur, M. 1981 Parameterization of small scales of three-dimensional isotropie turbulence utilizing spectral closures. J. Atmos. Sci. 38, 27472757.Google Scholar
Corrsin, S. 1951 The decay of isotropic temperature fluctuations in an isotropic turbulence. J. Aero. Sci. 18, 417423.Google Scholar
Corssin, S. 1964 The isotropic turbulent mixer: Part II. Arbitrary Schmidt number. A.I.Ch.E. J. 10, 870877.Google Scholar
Deissler, R. G. 1979 Decay of homogeneous turbulence from a given state at higher Reynolds number. Phys. Fluids 22, 18521856.Google Scholar
Edwards, S. F. 1964 The statistical dynamics of homogeneous turbulence. J. Fluid Mech. 18, 239273.Google Scholar
Forster, D., Nelson, D. R. & Stephen, M. J. 1977 Large distance and long time properties of a randomly stirred field. Phys. Rev. A16, 732749.Google Scholar
Fournier, J. D. & Frisch, U. 1978 D-dimensional fully developed turbulence. Phys. Rev. A 17, 747762.
Frisch, U., Lesieur, M. & Schertzer, D. 1980 Comment on the quasi-normal Markovian approximation for fully developed turbulence. J. Fluid Mech. 97, 181192.Google Scholar
Fulachier, L. & Dumas, R. 1976 Spectral analogy between temperature and velocity fluctuations in a turbulent boundary layer. J. Fluid Mech. 77, 257277.Google Scholar
Heisenberg, W. 1948 Zur statistischen Theorie der Turbulenz. Z. Phys. 124, 622665.Google Scholar
Herring, J. R. 1973 Statistical turbulence theory and turbulence phenomenology. In Proc. Langley Working Conf. on Free Turbulent Shear Flows. NASA SP321 (1973). Langley Research Center, Langley, VA (available from NTIS as N73–2815415GA).
Herring, J. R. 1974 Approach of an axisymmetric turbulence to isotropy. Phys. Fluids 17, 859872.Google Scholar
Herring, J. R. & Kerr, R. M. 1982 Comparison of direct numerical simulation with predictions of two-point closures for isotropic turbulence convecting a passive scalar. J. Fluid Mech. 118, 205219.Google Scholar
Herring, J. R. & Kraichnan, R. H. 1972 Comparison of some approximations for isotropic turbulence. In Statistical Models and Turbulence (ed. M. Rosenblatt & C. Van Atta). Lecture Notes in Physics, vol. 12, pp. 148194. Springer.
Herring, J. R. & Kraichnan, R. H. 1979 Numerical comparison of velocity-based and strainbased Lagrangian-history turbulence approximations. J. Fluid Mech. 91, 381397.Google Scholar
Hill, R. J. 1978 Models of the scalar spectrum for turbulent advection. J. Fluid Mech. 88, 541562.Google Scholar
Howells, I. D. 1960 An approximate equation for the spectrum of a conserved scalar quantity in a turbulent fluid. J. Fluid Mech. 9, 104106.Google Scholar
Kerr, R. M. & Nelkin, M. 1980 The decay of scalar variance simply expressed in terms of a modified Richardson law for particle dispersion. Preprint, submitted to Phys, Fluids.Google Scholar
Kolovandin, B. A., Luchko, N. N. & Martynenko, O. G. 1981 Modeling of homogeneous turbulent scalar field dynamics. In Proc. 3rd Symp. on Turbulent Shear Flow, Sept. 9–11, University of California, Davis, CA., pp. 15.7–15.12.
Kraichnan, R. H. 1958 Irreversible statistical mechanics of incompressible hydrodynamic turbulence. Phys. Rev. 109, 14071422.Google Scholar
Kraichnan, R. H. 1959 The structure of isotropie turbulence at very high Reynolds numbers. J. Fluid Mech. 5, 497543.Google Scholar
Kraichnan, R. H. 1965 Lagrangian-history closure approximation for turbulence. Phys. Fluids 8, 575598 (erratum 9, 1884).Google Scholar
Kraichnan, R. H. 1966 Dispersion of particle pairs in homogeneous turbulence. Phys. Fluids 9, 19371943.Google Scholar
Kraichnan, R. H. 1968 Small scale structure convected by turbulence. Phys. Fluids 11, 945953.Google Scholar
Kraichnan, R. H. 1971 An almost-Markovian Galilean-invariant turbulence model. J. Fluid Mech. 47, 513524.Google Scholar
Kraichnan, R. H. 1976 Eddy viscosity in two and three dimensions. J. Atmos. Sci. 33, 15211536.Google Scholar
Kraichnan, R. H. 1977 Eulerian and Lagrangian renormalization in turbulence theory. J. Fluid Mech. 83, 349374.Google Scholar
Kraichnan, R. H. & Herring, J. R. 1978 A strain-based Lagrangian-history turbulence theory. J. Fluid Mech. 88, 355367.Google Scholar
Larcheveque, M., Chollet, J. P., Herring, J. R., Lesieur, M., Newman, G. R. & Schertzer, D. 1980 Two-point closure applied to a passive scalar in decaying isotropic turbulence. In Turbulent Shear Flows, 2 (ed. L. J. S. Bradbury, F. Durst, B. E. Launder, F. W. Schmidt & J. H. Whitelaw), pp. 5065. Springer.
Larcheveque, M. & Lesieur, M. 1981 The application of eddy-damped Markovian closures to the problem of dispersion of particle pairs. J. Méc. 20, 113134.Google Scholar
Lee, T. D. 1952 On some statistical properties of hydrodynamical and magneto-hydrodynamical fields. Q. Appl. Math. 10, 6974.Google Scholar
Leith, C. E. 1968 Diffusion approximation for turbulent scalar fields. Phys. Fluids 11, 16121617.Google Scholar
Lesieur, M. & Chollet, J.-P. 1980 In Bifurcation and Nonlinear Eigenvalue Problems (ed. C. Bardos, M. Schatzmann & J. M. Lasry). Lecture Notes in Mathematics, vol. 782, pp. 101121. Springer.
Lesieur, M. & Schertzer, D. 1978 Amortissement autosimilaire d'une turbulence à grand nombre de Reynolds. J. Méc. 17, 607646.Google Scholar
Lesieur, M., Sommeria, J. & Holloway, G. 1981 Zones inertielles du spectre d'un contaminant passif en turbulence bidimensionnelle. C. R. Acad. Sci. Paris, Sér. II 292, 271274.Google Scholar
Leslie, D. C. 1973 Developments in the Theory of Turbulence. Clarendon.
Leslie, D. & Quarini, G. L. 1978 The application of turbulence theory to the formulation of subgrid modelling procedures. J. Fluid Mech. 91, 6591.Google Scholar
Mestayer, P. 1980 De la structure fine des champs turbulents dynamique et thermique pleinement développés en couche limite. Thèse d'Etat, Université d'Aix-Marseille II.
Monin, A. S. & Yaglom, A. M. 1975 Statistical Fluid Mechanics, vol. 2. M.I.T. Press.
Newman, G. R. & Herring, J. R. 1979 A test field model study of a passive scalar in isotropic turbulence. J. Fluid Mech. 94, 163194.Google Scholar
Newman, G. R., Warhaft, Z. & Lumley, J. L. 1977 The decay of temperature fluctuations in isotropic turbulence. In Proc. 6th Australian Hydraulics and Fluid Mechanics Conference, Adelaide.
O'Brien, E. F. & Francis, G. C.1962 A consequence of the zeroth fourth cumulant approximation. J. Fluid Mech. 13, 369382.Google Scholar
Oboukhov, A. M. 1941 On the distribution of energy in the spectrum of a turbulent flow. Dokl. Akad. Nauk SSSR 32, 2224.Google Scholar
Ogura, Y. 1962 The dependency of eddy diffusivity on the fluid Prandtl number. Adv. Geophys. 6, 175177.Google Scholar
Orszag, S. A. 1970 Analytical theories of turbulence. J. Fluid Mech. 41, 363386.Google Scholar
Orszag, S. A. 1974 Statistical theory of turbulence. In Proc. 1973 Les Houches Summer School (ed. R. Balian & J.-L. Peabe), pp. 237374. Gordon & Breach.
Phythian, R. 1969 Self-consistent perturbation series for stationary homogeneous turbulence. J. Phys. A: Gen. Phys. 2, 181192.Google Scholar
Pouquet, A., Lesieur, M. & André, J. C. 1975 High Reynolds number simulation of two-dimensional turbulence using a stochastic model. J. Fluid Mech. 72, 305319.Google Scholar
Quarini, G. L. 1976 Evaluation of inertial-convective range scalar transfer by re-appraisal of existing closures. Preprint.
Rose, H. & Sulem, P. L. 1978 Fully developed turbulence and statistical mechanics. J. Phys. (Paris) 39, 441483.Google Scholar
Rotta, J. 1951 Statistische Theorie nichthomogener Turbulenz. Z. Phys. 129, 547572.Google Scholar
Schertzer, D. 1980 Comportements auto-similaires en turbulence homogène isotrope. C.R. Acad. Sci. Paris 280, 277.Google Scholar
Schumann, U. & Herring, J. R. 1976 Axisymmetric homogeneous turbulence: a comparison of direct spectral simulations with the direct-interaction approximation. J. Fluid Mech. 76, 755782.Google Scholar
Sreenivasan, K. R., Tavoularis, S., Henry, R. & Corrsin, S. 1980 Temperature fluctuations and scales in grid-generated turbulence. J. Fluid Mech. 100, 597621.Google Scholar
Sulem, P. L., Lesieur, M. & Frisch, U. 1975 Le ‘Test Field Model’ interprété comme méthode de fermeture des équations de la turbulence. Ann. Geophys. 31, 487495.Google Scholar
Tatsumi, T., Kida, S. & Mizushima, J. 1978 The multiple-scale cumulant expansion for isotropic turbulence. J. Fluid Mech. 85, 97142.Google Scholar
Warhaft, Z. 1980 An experimental study of the effect of uniform strain on thermal fluctuations in grid-generated turbulence. J. Fluid Mech. 99, 545573.Google Scholar
Warhaft, Z. & Lumley, J. L. 1978 An experimental study of the decay of temperature fluctuations in grid-generated turbulence. J. Fluid Mech. 88, 659684.Google Scholar
Williams, R. M. 1974 High frequency temperature and velocity fluctuations in the atmospheric boundary layer. Ph.D. thesis, Oregon State University.
Yeh, T. T. & Van Atta, C. W. 1973 Spectral transfer of scalar and velocity fields in heated-grid turbulence. J. Fluid Mech. 58, 233261.Google Scholar